CS480/680, Spring 2025 Review Notes

Student: Hongxu Xu (h445xu@uwaterloo.ca)

August 5, 2025

Part I

For Mid-Term

1 Perceptron

Question 1 (Linear Function).

$$\forall \alpha \beta \in \mathbb{R}, \forall \boldsymbol{x}, \boldsymbol{z} \in \mathbb{R}^d, f(\alpha \boldsymbol{x} + \beta \boldsymbol{z}) = \alpha \cdot f(\boldsymbol{X}) + \beta \cdot f(\boldsymbol{z})$$

$$\iff \exists \boldsymbol{w} \in \mathbb{R}^d, f(\boldsymbol{x}) = \langle \boldsymbol{x}, \boldsymbol{w} \rangle$$
(1)

Proof \Rightarrow : Let $\boldsymbol{w} := [f(\boldsymbol{e_1}), \dots, f(\boldsymbol{e_d})]^T$, where $\boldsymbol{e_i}$ is the *i*-th coordinate vector.

$$f(\mathbf{x}) = f(x_1 \mathbf{e_1} + \dots + x_d \mathbf{e_d})$$

$$= x_1 f(\mathbf{e_1}) + \dots + x_d f(\mathbf{e_d})$$

$$= \langle \mathbf{x}, \mathbf{w} \rangle$$
(2)

Proof \Leftarrow :

$$f(\alpha \boldsymbol{x} + \beta \boldsymbol{z}) = \langle \alpha \boldsymbol{x} + \beta \boldsymbol{z}, \boldsymbol{w} \rangle$$

$$= \langle \alpha \boldsymbol{x}, \boldsymbol{w} \rangle + \langle \beta \boldsymbol{z}, \boldsymbol{w} \rangle$$

$$= \alpha \langle \boldsymbol{x}, \boldsymbol{w} \rangle + \beta \langle \boldsymbol{z}, \boldsymbol{w} \rangle$$

$$= \alpha f(\boldsymbol{x}) + \beta f(\boldsymbol{z})$$
(3)

Question 2 (w is Orthogonal to Decision Boundary H). Any vector on H can be written as $\overrightarrow{xx'} = x' - x$,

$$\langle \mathbf{x'} - \mathbf{x}, \mathbf{w} \rangle = \langle \mathbf{x'}, \mathbf{w} \rangle - \langle \mathbf{x}, \mathbf{w} \rangle = -b - (-b) = 0$$
(4)

Question 3 (Update Rule for Perceptron).

Question 4 (Feasibility of Perceptron). The goal is to find $\boldsymbol{w} \in \mathbb{R}^d$, $b \in \mathbb{R}$, such that $\forall i, y_i (\langle \boldsymbol{x_i}, \boldsymbol{w} \rangle + b) > 0$. According to the update rule 5,

$$y \left[\langle \boldsymbol{x}, \boldsymbol{w_{new}} \rangle + b_{new} \right] = y \left[\langle \boldsymbol{x}, \boldsymbol{w_{old}} + \boldsymbol{yx} \rangle + b_{old} + y \right]$$

$$= y \left[\langle \boldsymbol{x}, \boldsymbol{w_{old}} \rangle + b_{old} \right] + y \left[\langle \boldsymbol{x}, \boldsymbol{yx} \rangle + y \right]$$

$$= y \left[\langle \boldsymbol{x}, \boldsymbol{w_{old}} \rangle + b_{old} \right] + y \left[y \| \boldsymbol{x} \|_{2}^{2} + y \right]$$

$$= y \left[\langle \boldsymbol{x}, \boldsymbol{w_{old}} \rangle + b_{old} \right] + y^{2} \| \boldsymbol{x} \|_{2}^{2} + y^{2}$$

$$= y \left[\langle \boldsymbol{x}, \boldsymbol{w_{old}} \rangle + b_{old} \right] + \underbrace{\| \boldsymbol{x} \|_{2}^{2} + 1}_{\text{always positive}}$$
(6)

Notice that $y \in \{\pm 1\} \Rightarrow y^2 = 1$.

 $\|\boldsymbol{x}\|_{2}^{2}+1$ is always positive, which means we always increase the confidence $y\hat{y}$ after the update.

Question 5 (Trick for Hiding the Bias Term – Padding).

$$\langle \boldsymbol{x}, \boldsymbol{w} \rangle + b = \left\langle \begin{pmatrix} \boldsymbol{x} \\ 1 \end{pmatrix}, \begin{pmatrix} \boldsymbol{w} \\ b \end{pmatrix} \right\rangle$$

$$= \langle \boldsymbol{x}_{pad}, \boldsymbol{w}_{pad} \rangle$$
(7)

Correspondingly, the update rule can be written as:

$$w_{pad} \leftarrow w_{pad} + yx_{pad}$$
 (8)

Question 6 (Margin). Suppose $\exists w^*$ such that $\forall i, y_i \langle x_i, w^* \rangle > 0$.

We normalize $\boldsymbol{w^*}$ such that $\|\boldsymbol{w^*}\|_2 = 1$.

In other words, w^* is the normalized weight for the deicision boundary.

$$Margin \gamma := \min_{i} |\langle \boldsymbol{x_i}, \boldsymbol{w^*} \rangle|$$
 (9)

Question 7 (Convergence Theorem – Linearly Separable Case). Assume that $\forall i, \|x_i\|_2 \leq C$ (i.e. within a circle with radius C). Then the Perceptron algorithm converges after $\frac{C^2}{\gamma^2}$ mistakes.

Proof:

Suppose w is the updating weight, and θ is the angle between w and w^* .

We have $\langle \boldsymbol{w}, \boldsymbol{w}^* \rangle = \|\boldsymbol{w}\|_2 \|\boldsymbol{w}^*\|_2 \cos \theta = \|\boldsymbol{w}\|_2 \cos \theta$.

After an update, $\|\boldsymbol{w}_{new}\|_2 \cos \theta_{new}$ will be

$$\langle \boldsymbol{w} + y\boldsymbol{x}, \boldsymbol{w}^* \rangle = \langle \boldsymbol{w}, \boldsymbol{w}^* \rangle + y \langle \boldsymbol{x}, \boldsymbol{w}^* \rangle$$

$$= \langle \boldsymbol{w}, \boldsymbol{w}^* \rangle + |\langle \boldsymbol{x}, \boldsymbol{w}^* \rangle|$$

$$\geq \langle \boldsymbol{w}, \boldsymbol{w}^* \rangle + \gamma$$
(10)

Let's see the change of $\langle w_{new}, w_{new} \rangle = \|w_{new}\|_2^2$,

$$\langle \boldsymbol{w} + y\boldsymbol{x}, \boldsymbol{w} + y\boldsymbol{x} \rangle = \langle \boldsymbol{w}, \boldsymbol{w} \rangle + 2y \langle \boldsymbol{w}, \boldsymbol{x} \rangle + y^2 \langle \boldsymbol{x}, \boldsymbol{x} \rangle$$

$$= \|\boldsymbol{w}\|_2^2 + 2y \langle \boldsymbol{w}, \boldsymbol{x} \rangle + \|\boldsymbol{x}\|_2^2$$
(11)

Because $y \langle \boldsymbol{w}, \boldsymbol{x} \rangle < 0$ and $\|\boldsymbol{x}\|_2 \leq C$,

$$\langle \boldsymbol{w} + y\boldsymbol{x}, \boldsymbol{w} + y\boldsymbol{x} \rangle = \|\boldsymbol{w}\|_{2}^{2} + 2y \langle \boldsymbol{w}, \boldsymbol{x} \rangle + \|\boldsymbol{x}\|_{2}^{2}$$

$$\leq \|\boldsymbol{w}\|_{2}^{2} + C^{2}$$
(12)

Finally, suppose it converges after M updates, we have $\langle \boldsymbol{w}, \boldsymbol{w}^* \rangle \geq M \gamma$ and $\|\boldsymbol{w}\|_2^2 \leq M C^2$

$$1 = \cos \theta = \frac{\langle \boldsymbol{w}, \boldsymbol{w}^* \rangle}{\|\boldsymbol{w}\|_2 \|\boldsymbol{w}^*\|_2}$$

$$\geq \frac{M\gamma}{\sqrt{MC^2} \times 1}$$

$$= \sqrt{M} \frac{\gamma}{C}$$
(13)

which means $M \leq \frac{C^2}{\gamma^2}$.

Question 8 (Perceptron Loss).

$$l(\boldsymbol{w}, \boldsymbol{x_t}, y_t) = -y_t \langle \boldsymbol{w}, \boldsymbol{x_t} \rangle \mathbb{I}[\text{mistake on } \boldsymbol{x_t}]$$

$$= -\min \{ y_t \langle \boldsymbol{w}, \boldsymbol{x_i} \rangle, 0 \}$$
(14)

$$L(\boldsymbol{w}) = -\frac{1}{n} \sum_{t=1}^{n} y_t \langle \boldsymbol{w}, \boldsymbol{x_t} \rangle \mathbb{I}[\text{mistake on } \boldsymbol{x_t}]$$
(15)

2 Linear Regression

Question 9 (Least Square Regression).

$$\min_{f:\mathcal{X}\to\mathcal{V}} \mathbb{E} \left\| f(\boldsymbol{X}) - Y \right\|_2^2 \tag{16}$$

The optimal regression function is

$$f^*(\mathbf{x}) = m(x) = \mathbb{E}[Y|\mathbf{X} = \mathbf{x}]$$
(17)

Calculating it needs to know the distribution, i.e., all pairs (X, Y).

Question 10 (Bias-Variance Decomposition).

$$\mathbb{E} \| f(\mathbf{X}) - Y \|_{2}^{2} = \mathbb{E} \| f(\mathbf{X}) - m(x) + m(x) - Y \|_{2}^{2}$$

$$= \mathbb{E} \| f(\mathbf{X}) - m(x) \|_{2}^{2} + \mathbb{E} \| m(x) - Y \|_{2}^{2} + 2\mathbb{E} \langle f(\mathbf{X}) - m(x), m(x) - Y \rangle$$

$$= \mathbb{E} \| f(\mathbf{X}) - m(x) \|_{2}^{2} + \mathbb{E} \| m(x) - Y \|_{2}^{2} + \mathbb{E} \mathbb{E}_{Y|\mathbf{X}} [\langle f(\mathbf{X}) - m(x), m(x) - Y \rangle]$$

$$= \mathbb{E} \| f(\mathbf{X}) - m(x) \|_{2}^{2} + \mathbb{E} \| m(x) - Y \|_{2}^{2} + \mathbb{E} \langle f(\mathbf{X}) - m(x), m(x) - \mathbb{E}_{Y|\mathbf{X}}[Y] \rangle$$

$$= \mathbb{E} \| f(\mathbf{X}) - m(x) \|_{2}^{2} + \mathbb{E} \| m(x) - Y \|_{2}^{2} + \mathbb{E} \langle f(\mathbf{X}) - m(x), m(x) - m(x) \rangle$$

$$= \mathbb{E} \| f(\mathbf{X}) - m(x) \|_{2}^{2} + \mathbb{E} \| m(x) - Y \|_{2}^{2}$$
noise (variance)

The last term is the noise (variance), irrelevant to f. So, to minimize the squared error, we need $f \approx m$. However, $m(\boldsymbol{x})$ is incalculable, because $\mathbb{E}[Y|\boldsymbol{X}=\boldsymbol{x}]$ is unknown. Let's learn f_D from the training data D. Define $\bar{f}(\boldsymbol{X}) = \mathbb{E}_D[f_D(\boldsymbol{X})]$.

$$\underbrace{\mathbb{E}_{\boldsymbol{X},Y,D} \|f_D(\boldsymbol{X}) - Y\|_2^2}_{\text{test error}} = \mathbb{E}_{\boldsymbol{X}} \|f_D(\boldsymbol{X}) - m(x)\|_2^2 + \mathbb{E}_{\boldsymbol{X},Y} \|m(x) - Y\|_2^2 \\
= \mathbb{E}_{\boldsymbol{X},D} \|f_D(\boldsymbol{X}) - \bar{f}(\boldsymbol{X}) + \bar{f}(\boldsymbol{X}) - m(x)\|_2^2 + \mathbb{E}_{\boldsymbol{X},Y} \|m(x) - Y\|_2^2 \\
= \mathbb{E}_{\boldsymbol{X},D} \|f_D(\boldsymbol{X}) - \bar{f}(\boldsymbol{X})\|_2^2 + \mathbb{E}_{\boldsymbol{X}} \|\bar{f}(\boldsymbol{X}) - m(x)\|_2^2 \\
+ 2\mathbb{E}_{\boldsymbol{X},D} \langle f_D(\boldsymbol{X}) - \bar{f}(\boldsymbol{X}), \bar{f}(\boldsymbol{X}) - m(x) \rangle \\
+ \mathbb{E}_{\boldsymbol{X},Y} \|m(x) - Y\|_2^2 \\
= \cdots + 2\mathbb{E}_{\boldsymbol{X}} \mathbb{E}_D \langle f_D(\boldsymbol{X}) - \bar{f}(\boldsymbol{X}), \bar{f}(\boldsymbol{X}) - m(x) \rangle + \dots \\
= \cdots + 2\mathbb{E}_{\boldsymbol{X}} \langle \mathbb{E}_D [f_D(\boldsymbol{X})] - \bar{f}(\boldsymbol{X}), \bar{f}(\boldsymbol{X}) - m(x) \rangle + \dots \\
= \cdots + 2\mathbb{E}_{\boldsymbol{X}} \langle \bar{f}(\boldsymbol{X}) - \bar{f}(\boldsymbol{X}), \bar{f}(\boldsymbol{X}) - m(x) \rangle + \dots \\
= \cdots + 0 + \dots \\
= \mathbb{E}_{\boldsymbol{X},D} \|f_D(\boldsymbol{X}) - \bar{f}(\boldsymbol{X})\|_2^2 + \mathbb{E}_{\boldsymbol{X}} \|\bar{f}(\boldsymbol{X}) - m(x)\|_2^2 + \mathbb{E}_{\boldsymbol{X},Y} \|m(x) - Y\|_2^2 \\
= \mathbb{E}_{\boldsymbol{X},D} \|f_D(\boldsymbol{X}) - \mathbb{E}_D [f_D(\boldsymbol{X})]\|_2^2 + \mathbb{E}_{\boldsymbol{X}} \|\mathbb{E}_D [f_D(\boldsymbol{X})] - m(x)\|_2^2 + \mathbb{E}_{\boldsymbol{X},Y} \|m(x) - Y\|_2^2 \\
\text{variance} \\
\text{bias}^2 \\
\text{noise (variance)}$$

Question 11 (Sampling \to Training). Replace expectation with sample average: $(X_i, Y_i) \tilde{P}$.

$$\min_{f:\mathcal{X}\to\mathcal{Y}} \hat{\mathbb{E}} \|f(\mathbf{X}) - Y\|_{2}^{2} := \frac{1}{n} \sum_{i=1}^{n} \|f(\mathbf{X}_{i}) - Y_{i}\|_{2}^{2}$$
(20)

Uniform law of large numbers: as training data size $n \to \operatorname{argmin} \mathbb{E}$, $\hat{\mathbb{E}} \to \mathbb{E}$ and (hopefully) $\operatorname{argmin} \hat{\mathbb{E}} \to \mathbb{E}$.

Question 12 (Linear Regression). Padding:
$$\boldsymbol{x} \leftarrow \begin{pmatrix} \boldsymbol{x} \\ 1 \end{pmatrix}, W \leftarrow \begin{pmatrix} W \\ \boldsymbol{b} \end{pmatrix}$$

$$X = [\boldsymbol{x_1}, \dots, \boldsymbol{x_n}] \in \mathbb{R}^{(d+1) \times n},$$
$$Y = [\boldsymbol{y_1}, \dots, \boldsymbol{y_n}] \in \mathbb{R}^{t \times n},$$
$$W \in \mathbb{R}^{t \times (d+1)},$$
$$\|A\|_F = \sqrt{\sum_{ij} a_{ij}^2}$$

Linear regression is:

$$\min_{W \in \mathbb{R}^{t \times (d+1)}} \frac{1}{n} \|WX - Y\|_F^2 \tag{21}$$

Question 13 (Optimality Condition). If w is a minimizer (or maximizer) of a differentiable function f over an open set, then f'(w) = 0.

Question 14 (Solving Linear Regression).

$$L(W) = \frac{1}{n} \|WX - Y\|_F^2$$
 (22)

$$\nabla_W L(W) = \frac{2}{n} (WX - Y) X^T = 0$$

$$\Rightarrow WXX^T = YX^T$$

$$\Rightarrow W = YX^T (XX^T)^{-1}$$
(23)

Question 15 (Ill-Conditioning). Slight pertubation leads to chaotic behavior, which happens whenever X is ill-conditioned, i.e., (close to) rank-deficient.

Rank-deficient X means:

- 1. two columns in X are linearly dependent (or simply the same)
- 2. but the corresponding y might be different

Question 16 (Ridge Regression).

$$\min_{W} \frac{1}{n} \|WX - Y\|_F^2 + \lambda \|W\|_F^2 \tag{24}$$

$$\nabla_W L(W) = \frac{2}{n} (WX - Y)X^T + 2\lambda W = 0$$

$$\Rightarrow WXX^T - YX^T + \lambda W = 0$$

$$\Rightarrow W(XX^T + n\lambda I) = YX^T$$
(25)

$$X = U\Sigma V^{T}$$

$$\Rightarrow XX^{T} = U\Sigma (V^{T}V)\Sigma U^{T} = U\Sigma^{2}U^{T}$$

$$\Rightarrow XX^{T} + n\lambda I = U\underbrace{(\Sigma^{2} + n\lambda I)}_{\text{strictly positive}} U^{T}$$

$$\Rightarrow XX^{T} + n\lambda I \text{ is of full-rank}$$
(26)

 λ is regularization parameter. $\lambda = \infty \Rightarrow W \equiv \mathbf{0}$.

Question 17 (Regularization \equiv Data Augmentation).

$$\frac{1}{n} \|WX - Y\|_F^2 + \lambda \|W\|_F^2 = \frac{1}{n} \|W \begin{bmatrix} X & \sqrt{n\lambda}I \end{bmatrix} - [Y & \mathbf{0}] \|_F^2$$
 (27)

3 Logistic Regression

Question 18 (Max Likelihood Estimation). Let $\mathcal{Y} = \{0,1\}$. Learn confidence $p(x; w) := \Pr(Y = 1 | X = x)$.

$$\max_{\boldsymbol{w}} \Pr(Y_1 = y_1, \dots, Y_n = y_n) = \max_{\boldsymbol{w}} \prod_{i=1}^n \Pr(Y_i = y_i | X_i = x_i)$$

$$\stackrel{\mathcal{Y} = \{0,1\}}{=} \max_{\boldsymbol{w}} \prod_{i=1}^n \left[p(\boldsymbol{x}_i; \boldsymbol{w}) \right]^{y_i} \left[1 - p(\boldsymbol{x}_i; \boldsymbol{w}) \right]^{1-y_i}$$
(28)

Use negative log-likelihood:

$$\min_{\boldsymbol{w}} \sum_{i=1}^{n} \left[-y_i \log p(\boldsymbol{x_i}; \boldsymbol{w}) - (1 - y_i) \log(1 - p(\boldsymbol{x_i}; \boldsymbol{w})) \right]$$
(29)

Question 19 (Odds Ratio and Sigmoid).

Odds Ratio =
$$\frac{Pr}{1 - Pr}$$
 (30)

Assume $\log \frac{p(\boldsymbol{x}; \boldsymbol{w})}{1 - p(\boldsymbol{x}; \boldsymbol{w})} = \langle \boldsymbol{x}, \boldsymbol{w} \rangle$.

The Sigmoid transformation is:

$$p(\boldsymbol{x}; \boldsymbol{w}) = \frac{1}{1 + \exp(-\langle \boldsymbol{x}, \boldsymbol{w} \rangle)}$$
(31)

Question 20 (Logistic Regression). Plug the sigmoid in the negative log-likelihood:

$$\min_{\boldsymbol{w}} \sum_{i=1}^{n} \left[-y_{i} \log p(\boldsymbol{x}_{i}; \boldsymbol{w}) - (1 - y_{i}) \log(1 - p(\boldsymbol{x}_{i}; \boldsymbol{w})) \right]
= \min_{\boldsymbol{w}} \sum_{i=1}^{n} \left[y_{i} \log[1 + \exp(-\langle \boldsymbol{x}_{i}, \boldsymbol{w} \rangle)] - (1 - y_{i}) \log\left(1 - \frac{1}{1 + \exp(-\langle \boldsymbol{x}_{i}, \boldsymbol{w} \rangle)}\right) \right]
= \min_{\boldsymbol{w}} \sum_{i=1}^{n} \left[y_{i} \log[1 + \exp(-\langle \boldsymbol{x}_{i}, \boldsymbol{w} \rangle)] - (1 - y_{i}) \log\left(\frac{\exp(-\langle \boldsymbol{x}_{i}, \boldsymbol{w} \rangle)}{1 + \exp(-\langle \boldsymbol{x}, \boldsymbol{w} \rangle)}\right) \right]
= \min_{\boldsymbol{w}} \sum_{i=1}^{n} \left[y_{i} \log[1 + \exp(-\langle \boldsymbol{x}_{i}, \boldsymbol{w} \rangle)] + (1 - y_{i}) \left[\langle \boldsymbol{x}_{i}, \boldsymbol{w} \rangle + \log(1 + \exp(-\langle \boldsymbol{x}, \boldsymbol{w} \rangle)) \right] \right]
= \min_{\boldsymbol{w}} \sum_{i=1}^{n} \left[\log[1 + \exp(-\langle \boldsymbol{x}_{i}, \boldsymbol{w} \rangle)] + (1 - y_{i}) \langle \boldsymbol{x}_{i}, \boldsymbol{w} \rangle \right]$$
(32)

Because $y_i \in \{0, 1\}$, let's map it to $\{\pm 1\}$.

$$L(\boldsymbol{w}) \overset{y_{i} \in \{0,1\}}{=} \log[1 + \exp(-\langle \boldsymbol{x}_{i}, \boldsymbol{w} \rangle)] + (1 - y_{i}) \langle \boldsymbol{x}_{i}, \boldsymbol{w} \rangle$$

$$\overset{y_{i} \in \{0,1\}}{=} \log[1 + \exp(-\langle \boldsymbol{x}_{i}, \boldsymbol{w} \rangle)] + \log[\exp((1 - y_{i}) \langle \boldsymbol{x}_{i}, \boldsymbol{w} \rangle)]$$

$$\overset{y_{i} \in \{0,1\}}{=} \log[1 + \exp(-\langle \boldsymbol{x}_{i}, \boldsymbol{w} \rangle) \cdot \exp((1 - y_{i}) \langle \boldsymbol{x}_{i}, \boldsymbol{w} \rangle)]$$

$$\overset{y_{i} \in \{0,1\}}{=} \log[\exp((1 - y_{i}) \langle \boldsymbol{x}_{i}, \boldsymbol{w} \rangle) + \exp(-y_{i} \langle \boldsymbol{x}_{i}, \boldsymbol{w} \rangle)]$$

$$y_{i} \in \{0,1\}}{=} \begin{cases} \log[\exp(\langle \boldsymbol{x}_{i}, \boldsymbol{w} \rangle) + 1] & y_{i} = 0 \\ \log[1 + \exp(-\langle \boldsymbol{x}_{i}, \boldsymbol{w} \rangle)] & y_{i} = 1 \end{cases}$$

$$\overset{y_{i} \in \{\pm 1\}}{=} \log[1 + \exp(-y_{i} \langle \boldsymbol{x}_{i}, \boldsymbol{w} \rangle)]$$

Question 21 (Multi-Class: Sigmoid \rightarrow Softmax).

$$\Pr(Y = k | X = \boldsymbol{x}; \boldsymbol{W} = [\boldsymbol{w_1}, \dots, \boldsymbol{w_c}]) = \frac{\exp(\langle \boldsymbol{x}, \boldsymbol{w_k} \rangle)}{\sum_{l=1}^{c} \exp(\langle \boldsymbol{x}, \boldsymbol{w_l} \rangle)}$$
(34)

Maximum likelihood estimation (log loss, cross-entropy loss):

$$\min_{\mathbf{W}} \sum_{i=1}^{n} \left[-\log \frac{\exp(\langle \mathbf{x}, \mathbf{w}_{k} \rangle)}{\sum_{l=1}^{c} \exp(\langle \mathbf{x}, \mathbf{w}_{l} \rangle)} \right]$$
(35)

4 Hard-Margin Support Vector Machines

Question 22 (Distance from a Point to a Hyperplane). Let $H := \{x : \langle x, w \rangle + b = 0\}$, x be any vector in H.

$$Distance(\boldsymbol{x_i}, \boldsymbol{w}) = \frac{|\langle \boldsymbol{x_i} - \boldsymbol{x}, \boldsymbol{w} \rangle|}{\|\boldsymbol{w}\|_2} = \frac{|\langle \boldsymbol{x_i}, \boldsymbol{w} \rangle - \langle \boldsymbol{x}, \boldsymbol{w} \rangle|}{\|\boldsymbol{w}\|_2} \stackrel{\boldsymbol{x} \in H}{=} \frac{|\langle \boldsymbol{x_i}, \boldsymbol{w} \rangle + b|}{\|\boldsymbol{w}\|_2} \stackrel{y_i \hat{y_i}}{=} {}^{0} \frac{y_i \hat{y_i}}{\|\boldsymbol{w}\|_2}$$
(36)

Question 23 (Margin Maximization). Margin is the smallest distance to H among all separable data.

$$\max_{\boldsymbol{w},b} \min_{i} \frac{y_i \hat{y}_i}{\|\boldsymbol{w}\|_2}, \text{ such that } \forall i, y_i \hat{y}_i > 0$$
(37)

Let c > 0, then $\mathbf{w} = c\mathbf{w}, b = cb$ keeps the loss same:

$$\max_{\boldsymbol{w},b} \min_{i} \frac{cy_{i}\hat{y}_{i}}{\|c\boldsymbol{w}\|_{2}} = \max_{\boldsymbol{w},b} \min_{i} \frac{y_{i}(\langle \boldsymbol{x}, c\boldsymbol{w} \rangle + cb)}{\|c\boldsymbol{w}\|_{2}}$$

$$= \max_{\boldsymbol{w},b} \min_{i} \frac{cy_{i}(\langle \boldsymbol{x}, \boldsymbol{w} \rangle + b)}{c\|\boldsymbol{w}\|_{2}}$$

$$= \max_{\boldsymbol{w},b} \min_{i} \frac{y_{i}(\langle \boldsymbol{x}, \boldsymbol{w} \rangle + b)}{\|\boldsymbol{w}\|_{2}}$$

$$= \max_{\boldsymbol{w},b} \min_{i} \frac{y_{i}\hat{y}_{i}}{\|\boldsymbol{w}\|_{2}}$$
(38)

Let $c = \frac{1}{\min_i y_i \hat{y_i}}$,

$$\max_{\boldsymbol{w},b} \min_{i} \frac{cy_{i}\hat{y}_{i}}{c\|\boldsymbol{w}\|_{2}} = \max_{\boldsymbol{w},b} \frac{1}{c\|\boldsymbol{w}\|_{2}}$$

$$= \max_{\boldsymbol{w},b} \frac{1}{\|\boldsymbol{w}\|_{2}} \text{ s.t. } \min_{i} y_{i}\hat{y}_{i} = 1$$
(39)

 $\text{Max} \to \text{Min}$:

$$\min_{\boldsymbol{w},b} \frac{1}{2} \|\boldsymbol{w}\|_{2}^{2} \text{ s.t. } \forall i, y_{i} \hat{y}_{i} \ge 1$$

$$\tag{40}$$

Question 24 (Hard-Margin SVM v.s. Perceptron).

Hard-Margin SVM:
$$\min_{\boldsymbol{w},b} \frac{1}{2} \|\boldsymbol{w}\|_{2}^{2} \qquad \text{s.t. } \forall i, y_{i} \hat{y}_{i} \geq 1$$
 (41)

Perceptron:
$$\min_{y_i, h} 0$$
 s.t. $\forall i, y_i \hat{y_i} \ge 1$ (42)

Question 25 (Lagrangian Dual). Dual variables $\alpha \in \mathbb{R}^n$.

$$\min_{\boldsymbol{w},b} \max_{\boldsymbol{\alpha} \geq 0} \frac{1}{2} \|\boldsymbol{w}\|_{2}^{2} - \sum_{i} \alpha_{i} \left[y_{i}(\langle \boldsymbol{x}_{i}, \boldsymbol{w} \rangle + b) - 1 \right] = \min_{\boldsymbol{w},b} \begin{cases} +\infty, & \text{if } \exists i, y_{i}(\langle \boldsymbol{x}_{i}, \boldsymbol{w} \rangle + b) < 1 & (\alpha_{i} = +\infty) \\ \frac{1}{2} \|\boldsymbol{w}\|_{2}^{2}, & \text{if } \forall i, y_{i}(\langle \boldsymbol{x}_{i}, \boldsymbol{w} \rangle + b) \geq 1 & (\forall i, \alpha_{i} = 0) \end{cases}$$

$$= \min_{\boldsymbol{w},b} \frac{1}{2} \|\boldsymbol{w}\|_{2}^{2}, \quad \text{s.t. } \forall i, y_{i}(\langle \boldsymbol{x}_{i}, \boldsymbol{w} \rangle + b) \geq 1$$

$$= \min_{\boldsymbol{w},b} \frac{1}{2} \|\boldsymbol{w}\|_{2}^{2} \text{ s.t. } \forall i, y_{i} \hat{y}_{i} \geq 1$$

$$(43)$$

Swap min and max:

$$\max_{\boldsymbol{\alpha} \geq 0} \min_{\boldsymbol{w}, b} \frac{1}{2} \|\boldsymbol{w}\|_{2}^{2} - \sum_{i} \alpha_{i} \left[y_{i} (\langle \boldsymbol{x}_{i}, \boldsymbol{w} \rangle + b) - 1 \right]$$

$$(44)$$

Solve inner problem by setting derivative to 0:

$$\frac{\delta}{\delta \boldsymbol{w}} = \boldsymbol{w} - \sum_{i} \alpha_{i} y_{i} \boldsymbol{x}_{i} = 0, \qquad \frac{\delta}{\delta b} = -\sum_{i} \alpha_{i} y_{i} = 0, \tag{45}$$

Plug them into the loss:

$$L(\boldsymbol{\alpha}) = \min_{\boldsymbol{w},b} \frac{1}{2} \|\boldsymbol{w}\|_{2}^{2} - \sum_{i} \alpha_{i} \left[y_{i}(\langle \boldsymbol{x}_{i}, \boldsymbol{w} \rangle + b) - 1\right]$$

$$= \frac{1}{2} \left\| \sum_{i} \alpha_{i} y_{i} \boldsymbol{x}_{i} \right\|_{2}^{2} - \sum_{i} \alpha_{i} y_{i} \langle \boldsymbol{x}_{i}, \boldsymbol{w} \rangle - \sum_{i} \alpha_{i} y_{i} b + \sum_{i} \alpha_{i}$$

$$= \frac{1}{2} \left\| \sum_{i} \alpha_{i} y_{i} \boldsymbol{x}_{i} \right\|_{2}^{2} - \left\langle \sum_{i} \alpha_{i} y_{i} \boldsymbol{x}_{i}, \sum_{i} \alpha_{i} y_{i} \boldsymbol{x}_{i} \right\rangle - b \sum_{i} \alpha_{i} y_{i} + \sum_{i} \alpha_{i}$$

$$= \frac{1}{2} \left\| \sum_{i} \alpha_{i} y_{i} \boldsymbol{x}_{i} \right\|_{2}^{2} - \left\| \sum_{i} \alpha_{i} y_{i} \boldsymbol{x}_{i} \right\|_{2}^{2} + \sum_{i} \alpha_{i}$$

$$= \sum_{i} \alpha_{i} - \frac{1}{2} \left\| \sum_{i} \alpha_{i} y_{i} \boldsymbol{x}_{i} \right\|_{2}^{2}, \quad \text{s.t. } \sum_{i} \alpha_{i} y_{i} = 0$$

$$(46)$$

So, 44 is solved as:

$$\max_{\alpha \ge 0} \sum_{i} \alpha_{i} - \frac{1}{2} \left\| \sum_{i} \alpha_{i} y_{i} \boldsymbol{x}_{i} \right\|_{2}^{2}, \quad \text{s.t. } \sum_{i} \alpha_{i} y_{i} = 0$$

$$(47)$$

 $\text{Max} \to \text{min}$ and expand the norm:

$$\min_{\alpha \ge 0} - \sum_{i} \alpha_{i} + \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} \underbrace{\langle \boldsymbol{x}_{i}, \boldsymbol{x}_{j} \rangle}_{\text{Kernel, closed form w.r.t. } \boldsymbol{x}_{i}, \boldsymbol{x}_{j}}, \quad \text{s.t. } \sum_{i} \alpha_{i} y_{i} = 0 \tag{48}$$

Question 26 (Support Vectors). From 45, we know $\mathbf{w} = \sum_i \alpha_i y_i \mathbf{x_i}$. Vectors with $\alpha_i \neq 0$ are support vectors, which lie on the margin.

5 Soft-Margin Support Vector Machines

Question 27 (Goal). minimize over \boldsymbol{w}, b ,

$$\Pr(Y \neq \operatorname{sign}(\hat{Y})) = \Pr(Y\hat{Y} \leq 0) = \mathbb{E} \underbrace{\mathbb{I}[Y\hat{Y} \leq 0]}_{indicator function} := \mathbb{E} \ l_{0-1}(Y\hat{Y})$$

$$(49)$$

where $\hat{Y} = \langle X, \boldsymbol{w} \rangle + b, Y = \pm 1.$

$$\min_{\hat{Y}:\mathcal{X}\to\mathbb{R}} \mathbb{E} \ l_{0-1}(Y\hat{Y}) = \min_{\hat{Y}:\mathcal{X}\to\mathbb{R}} \mathbb{E}_X \mathbb{E}_{Y|X} \ l_{0-1}(Y\hat{Y})$$

$$= \mathbb{E}_X \min_{\hat{Y}:\mathcal{X}\to\mathbb{R}} \mathbb{E}_{Y|X} \ l_{0-1}(Y\hat{Y})$$
(50)

Minimizing the 0-1 error is **NP-hard**.

Question 28 (Bayes Rule).

$$\eta(\boldsymbol{x}) := \underset{\hat{y} \in \mathbb{R}}{\operatorname{argmax}} \Pr(Y = \hat{y} | X = \boldsymbol{x})$$
(51)

$$\eta(\boldsymbol{x}) := \operatorname*{argmin}_{\hat{y} \in \mathbb{R}} \mathbb{E}_{Y|X=\boldsymbol{x}} \ l_{0-1}(Y\hat{y}) \tag{52}$$

Question 29 (Classification Calibrated). A loss $l(y\hat{y})$ is classification calibrated, iff $\forall x$,

$$\hat{y}(\boldsymbol{x}) \coloneqq \underset{\hat{y} \in \mathbb{R}}{\operatorname{argmin}} \, \mathbb{E}_{Y|X=\boldsymbol{x}} \, l(Y\hat{y})$$

has the same sign as the Bayes rule $\eta(x) := \operatorname{argmin}_{\hat{y} \in \mathbb{R}} \mathbb{E}_{Y|X=x} l_{0-1}(Y\hat{y})$ Notice: $\eta(x), \hat{y}(x)$ provide the **score**, their sign provides the prediction.

Question 30 (Characterization under Convexity). Any convex loss l is classification calibrated iff l is differentiable at 0 and l'(0) < 0.

Question 31 (Hinge Loss).

$$l_{hinge}(y\hat{y}) = (1 - y\hat{y})^{+} := \max\{0, 1 - y\hat{y}\} = \begin{cases} 1 - y\hat{y}, & \text{if } y\hat{y} < 1\\ 0, & \text{otherwise} \end{cases}$$
 (53)

The classifier that minimizes the expected hinge loss minimizes the expected 0-1 loss.

Question 32 (Soft-Margin SVM).

$$\min_{\boldsymbol{w},b} \frac{1}{2} \|\boldsymbol{w}\|_{2}^{2} + C \cdot \sum_{i} l_{hinge}(y_{i}\hat{y}_{i}), \quad \text{s.t. } \hat{y}_{i} = \langle \boldsymbol{x}_{i}, \boldsymbol{w} \rangle + b$$

$$(54)$$

Question 33 (Lagrangian Dual). Apply $C \cdot l_{hinge}(t) \coloneqq \max\{0, C(1-t)\} = \max_{0 \le \alpha \le C} \alpha(1-t)$

$$\min_{\boldsymbol{w},b} \max_{0 \le \boldsymbol{\alpha} \le C} \frac{1}{2} \|\boldsymbol{w}\|_{2}^{2} + \sum_{i} \alpha_{i} (1 - y_{i} \hat{y}_{i})$$
(55)

Swap min with max:

$$\max_{0 \le \boldsymbol{\alpha} \le C} \min_{\boldsymbol{w}, b} \frac{1}{2} \|\boldsymbol{w}\|_{2}^{2} + \sum_{i} \alpha_{i} (1 - y_{i} \hat{y}_{i})$$

$$(56)$$

Solve it by setting derivative to 0:

$$\frac{\delta}{\delta \boldsymbol{w}} = \boldsymbol{w} - \sum_{i} \alpha_{i} y_{i} \boldsymbol{x}_{i} = 0, \qquad \frac{\delta}{\delta b} = -\sum_{i} \alpha_{i} y_{i} = 0, \tag{57}$$

Plug them into the loss:

$$\max_{0 \leq \boldsymbol{\alpha} \leq C} \min_{\boldsymbol{w}, b} \frac{1}{2} \|\boldsymbol{w}\|_{2}^{2} + \sum_{i} \alpha_{i} (1 - y_{i} \hat{y}_{i}) = \max_{0 \leq \boldsymbol{\alpha} \leq C} \min_{\boldsymbol{w}, b} \frac{1}{2} \|\boldsymbol{w}\|_{2}^{2} + \sum_{i} \alpha_{i} [1 - y_{i} (\langle \boldsymbol{x}_{i}, \boldsymbol{w} \rangle + b)]$$

$$= \max_{0 \leq \boldsymbol{\alpha} \leq C} \sum_{i} \alpha_{i} - \frac{1}{2} \left\| \sum_{i} \alpha_{i} y_{i} \boldsymbol{x}_{i} \right\|_{2}^{2}, \quad \text{s.t. } \sum_{i} \alpha_{i} y_{i} = 0$$
(58)

 $\text{Max} \to \text{min}$ and expand the norm:

$$\min_{0 \le \boldsymbol{\alpha} \le C} - \sum_{i} \alpha_{i} + \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} \underbrace{\langle \boldsymbol{x}_{i}, \boldsymbol{x}_{j} \rangle}_{\text{Kernel, closed form w.r.t. } \boldsymbol{x}_{i}, \boldsymbol{x}_{j}}, \quad \text{s.t. } \sum_{i} \alpha_{i} y_{i} = 0 \tag{59}$$

 $C \to \infty \Rightarrow \text{Hard-margin SVM}, C \to 0 \Rightarrow \text{a constant classifier}$

6 Reproducing Kernels

Question 34 ((Reproducing) Kernels). $k:(X)\times\mathcal{X}\to\mathbb{R}$ is a (reproducing) kernel iff there exists some $\Phi:\mathcal{X}\to\mathcal{H}$ so that $\langle\Phi(\boldsymbol{x}),\Phi(\boldsymbol{z})\rangle=k(\boldsymbol{x},\boldsymbol{z}).$

- A feature transform Φ determines the corresponding kernel k.
- A kernel k determines some feature transforms Φ , but may not be unique. E.g. $\langle \phi(\boldsymbol{x}), \phi(\boldsymbol{z}) \rangle = \langle \phi'(\boldsymbol{x}), \phi'(\boldsymbol{z}) \rangle$
 - 1. $\phi(x) := [x_1^2, \sqrt{2}x_1x_2] \in \mathbb{R}^2$
 - 2. $\phi'(x) := [x_1^2, x_1x_2, x_1x_2] \in \mathbb{R}^3$

Question 35 (Mercer's Theorem). $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a kernel, iff $\forall n \in \mathbb{N}, \forall x_1, \dots, x_n \in \mathcal{X}$, the kernel matrix K such that $K_{ij} := k(x_i, x_j)$ is symmetric and positive semi-definite (PSD).

$$k \text{ is a kernel} \Leftrightarrow \begin{cases} K_{ij} = K_{ji} & \text{(symmetric)} \\ \langle \boldsymbol{\alpha}, K \boldsymbol{\alpha} \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j K_{ij} \ge 0 & \forall \boldsymbol{\alpha} \in \mathbb{R}^n & \text{(PSD)} \end{cases}$$

Question 36 (Symmetric PSD). For a symmetric matrix A, the following conditions are equivalent.

- 1. $A \succeq 0$
- 2. $A = U^T U$ for some matrix U
- 3. $x^T A x \ge 0$ for every $x \in \mathbb{R}^n$
- 4. All principal minors of A are nonnegative

7 Gradient Descent

Question 37 (Gradient Descent Template). Choose initial point $x^{(0)} \in \mathbb{R}^d$ and repeat:

$$x^{(k)} = x^{(k-1)} - \underbrace{\eta}_{\text{step size}} \nabla f(x^{(k-1)}), \quad k = 1, 2, \dots$$
 (61)

Question 38 (Interpretation from Taylor Expansion). Expand f locally at x:

$$f(y) \approx f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2t} \|y - x\|_{2}^{2}$$

$$\Rightarrow \min_{y} f(y) \approx \min_{y} \left[f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2t} \|y - x\|_{2}^{2} \right]$$
(62)

When $y - x = \frac{\nabla f(x)}{-2\frac{1}{2t}} = -t\nabla f(x) \Longrightarrow y = x - t\nabla f(x)$, it reaches the minimum.

Question 39 (L-smooth or L-Lipschitz Continuous). f is convex and differentiable. ∇f is L-Lipschitz continuous (L-smooth):

$$LI \succeq \nabla^2 f(x), \forall x$$
 (63)

Question 40 (Convergence Rate for Convex Case). Assume f is L-smooth. Gradient descent with fixed step size $t \leq \frac{1}{L}$ satisfies:

$$f(x^{(k)}) - f(x^*) \le \frac{\|x^{(0)} - x^*\|_2^2}{2tk}$$
(64)

We say gradient descent has convergence rate $O(\frac{1}{k})$, i.e. $f(x^{(k)}) - f(x^*) \le \epsilon$ can be achieved using only $O(\frac{1}{\epsilon})$ iterations.

Proof

$$f(y) = f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(\xi) (y - x)$$

$$\leq f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} L \|y - x\|_{2}^{2} \qquad (L\text{-smooth}, L\mathbf{I} \succeq \nabla^{2} f(\xi))$$
(65)

Plug in gradient descent:

$$f(x^{+}) = f(y)$$

$$\leq f(x) + \nabla f(x)^{T} (x - t \nabla f(x) - x) + \frac{1}{2} L \|x - t \nabla f(x) - x\|_{2}^{2}$$

$$= f(x) - (1 - \frac{1}{2} Lt)t \|\nabla f(x)\|_{2}^{2}$$

$$\leq f(x) - \frac{1}{2} t \|\nabla f(x)\|_{2}^{2} \quad (t \leq \frac{1}{L})$$
(66)

 $f \text{ is convex} \Rightarrow f(x^*) \geq f(x) + \nabla f(X)^T(x^* - x) \Rightarrow f(x) \leq f(x^*) + \nabla f(x)^T(x - x^*)$

Plug this into 66:

$$f(x^{+}) \leq f(x^{*}) + \nabla f(x)^{T}(x - x^{*}) - \frac{1}{2}t \|\nabla f(x)\|_{2}^{2}$$

$$\Rightarrow f(x^{+}) - f(x^{*}) \leq \frac{1}{2t} \left(2t \nabla f(x)^{T}(x - x^{*}) - t^{2} \|\nabla f(x)\|_{2}^{2} \right)$$

$$\Rightarrow f(x^{+}) - f(x^{*}) \leq \frac{1}{2t} \left(2t \nabla f(x)^{T}(x - x^{*}) - t^{2} \|\nabla f(x)\|_{2}^{2} - \|x - x^{*}\|_{2}^{2} + \|x - x^{*}\|_{2}^{2} \right)$$

$$\Rightarrow f(x^{+}) - f(x^{*}) \leq \frac{1}{2t} \left(\|x - x^{*}\|_{2}^{2} - (\|x - x^{*}\|_{2}^{2} + t^{2} \|\nabla f(x)\|_{2}^{2} - 2t \nabla f(x)^{T}(x - x^{*})) \right)$$

$$\Rightarrow f(x^{+}) - f(x^{*}) \leq \frac{1}{2t} \left(\|x - x^{*}\|_{2}^{2} - \|x - x^{*} - t \nabla f(x)\|_{2}^{2} \right)$$

$$\Rightarrow f(x^{+}) - f(x^{*}) \leq \frac{1}{2t} \left(\|x - x^{*}\|_{2}^{2} - \|x - x^{*} - t \nabla f(x)\|_{2}^{2} \right)$$

$$\Rightarrow f(x^{+}) - f(x^{*}) \leq \frac{1}{2t} \left(\|x - x^{*}\|_{2}^{2} - \|x - x^{*} - t \nabla f(x)\|_{2}^{2} \right)$$

Viewing x^+ as $x^{(i)}$ and x as $x^{(x-1)}$:

$$\sum_{i=1}^{k} \left(f(x^{(i)}) - f(x^*) \right) \leq \sum_{i=1}^{k} \frac{1}{2t} \left(\left\| x^{(i-1)} - x^* \right\|_2^2 - \left\| x^{(i)} - x^* \right\|_2^2 \right) \\
= \frac{1}{2t} \left(\left\| x^{(0)} - x^* \right\|_2^2 - \left\| x^{(k)} - x^* \right\|_2^2 \right) \\
\leq \frac{1}{2t} \left\| x^{(0)} - x^* \right\|_2^2 \tag{68}$$

which implies

$$f(x^{(k)}) \le \frac{1}{k} \sum_{i=1}^{k} f(x^{(i)}) \le f(x^*) + \frac{\|x^{(0)} - x^*\|_2^2}{2tk}$$
(69)

Question 41 (Convergence Rate for Strong Convexity). f is differentiable, L-smooth, and m-strongly convex. m-strong convexity of f means $f(x) - \frac{m}{2} \|x\|_2^2$ is convex, i.e. $\nabla^2 f(x) \succeq m\mathbf{I}$ Then, there is a constant $0 < \gamma < 1$ such that gradient descent with fixed step size $t \leq \frac{2}{m+L}$ satisfies:

$$f(x^{(k)}) - f(x^*) \le \gamma^k \frac{L}{2} \left\| x^{(0)} - x^* \right\|_2^2 \tag{70}$$

Rate is $O(\gamma^k)$. Only $O(\log_{\frac{1}{\alpha}}(\frac{1}{\epsilon}))$ iterations needed.

Question 42 (Convergence Rate for Non-Convex Case). f is differentiable and L-smooth, but non-convex. Gradient descent with fixed step size $t \leq \frac{1}{L}$ satisfies:

$$\min_{i=0,\dots,k} \left\| \nabla f(x^{(i)}) \right\|_2 \le \sqrt{\left(\frac{2(f(x^{(0)} - f^*))}{t(k+1)}\right)}$$
(71)

Rate is $O(\frac{1}{\sqrt{k}})$ for finding stationary point. $O(\frac{1}{\epsilon^2})$ iterations are needed.

Question 43 (Convergence Rate for Stochastic Gradient Descent). For convex and L-smooth f,

• Gradient Descent

$$\mathbf{w}^{+} = \mathbf{w} - t \cdot \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(\mathbf{w})$$
 (72)

- Step size $t \leq \frac{1}{L}$
- Time complexity $O(\frac{n}{\epsilon})$
- Stochastic Gradient Descent

$$\mathbf{w}^{+} = \mathbf{w} - t \cdot \nabla f_{I_{random}}(\mathbf{w}) \tag{73}$$

- Step size $t = \frac{1}{k}, k = 1, 2, 3, \dots$ (adaptive step size)
- Time complexity $O(\frac{1}{\epsilon^2})$

8 Fully-Connected Neural Networks

Question 44 (Forward and Backward Pass of a 2-Layer MLP). A 2-layer MLP (k is the NN width, c is the output dim):

$$x = \text{input}$$
 $(x \in \mathbb{R}^d)$ (74)

$$z = Wx + b_1 \qquad (W \in \mathbb{R}^{k \times d}, z, b \in \mathbb{R}^k)$$
(75)

$$\mathbf{h} = \text{ReLU}(\mathbf{z})$$
 $(\mathbf{h} \in \mathbb{R}^k)$ (76)

$$\boldsymbol{\theta} = \boldsymbol{U}\boldsymbol{h} + \boldsymbol{b_2} \qquad (\boldsymbol{U} \in \mathbb{R}^{c \times k}, \boldsymbol{\theta}, \boldsymbol{b_2} \in \mathbb{R}^c)$$
 (77)

$$J = \frac{1}{2} \|\boldsymbol{\theta} - \boldsymbol{y}\|_{2}^{2} \qquad (\boldsymbol{y} \in \mathbb{R}^{c}, J \in \mathbb{R})$$
 (78)

$$ReLU = \begin{cases} x & x > 0\\ 0 & x \le 0 \end{cases} \tag{79}$$

$$ReLU' = \begin{cases} 1 & x > 0 \\ 0 & x \le 0 \end{cases} \tag{80}$$

Backward pass (\odot is the Hadamard product, i.e. element-wise product):

$$\frac{\delta J}{\delta \theta} = \theta - y \tag{81}$$

$$\frac{\delta J}{\delta \boldsymbol{U}} = \frac{\delta J}{\delta \boldsymbol{\theta}} \circ \frac{\delta \boldsymbol{\theta}}{\delta \boldsymbol{U}} = (\boldsymbol{\theta} - \boldsymbol{y}) \boldsymbol{h}^T$$
 (82)

$$\frac{\delta J}{\delta \mathbf{b_2}} = \frac{\delta J}{\delta \boldsymbol{\theta}} \circ \frac{\delta \boldsymbol{\theta}}{\delta \mathbf{b_2}} = \boldsymbol{\theta} - \boldsymbol{y} \tag{83}$$

$$\frac{\delta J}{\delta \boldsymbol{h}} = \frac{\delta J}{\delta \boldsymbol{\theta}} \circ \frac{\delta \boldsymbol{\theta}}{\delta \boldsymbol{h}} = \boldsymbol{U}^{T} (\boldsymbol{\theta} - \boldsymbol{y})$$
(84)

$$\frac{\delta J}{\delta z} = \frac{\delta J}{\delta h} \circ \frac{\delta h}{\delta z} = U^{T}(\theta - y) \odot \text{ReLU}'(z)$$
(85)

$$\frac{\delta J}{\delta \mathbf{W}} = \frac{\delta J}{\delta \mathbf{z}} \circ \frac{\delta \mathbf{z}}{\delta \mathbf{W}} = \mathbf{U}^{T} (\boldsymbol{\theta} - \mathbf{y}) \odot \text{ReLU}'(\mathbf{z}) \mathbf{x}^{T}$$
(86)

$$\frac{\delta J}{\delta \mathbf{b_1}} = \frac{\delta J}{\delta \mathbf{z}} \circ \frac{\delta \mathbf{z}}{\delta \mathbf{b_1}} = \mathbf{U}^T (\boldsymbol{\theta} - \mathbf{y}) \odot \text{ReLU}'(\mathbf{z})$$
(87)

Question 45 (Universal Approximation Theorem by 2-Layer NNs). For any continuous function $f: \mathbb{R}^d \to \mathbb{R}^c$ and any $\epsilon > 0$, there exists $k \in \mathbb{N}, \mathbf{W} \in \mathbb{R}^{k \times d}, \mathbf{b} \in \mathbb{R}^k, \mathbf{U} \in \mathbb{R}^{c \times k}$ such that

$$\sup_{\boldsymbol{x}} \|f(\boldsymbol{x}) - g(\boldsymbol{x})\|_2 < \epsilon \tag{89}$$

(88)

where $q(x) = U(\sigma(Wx + b))$ and σ is the element-wise ReLU operation.

As long as the 2-layer MLP is wide enough, it can approximate any continuous function arbitrarily closely.

9 Convolutional Neural Networks

Question 46 (Controlling the Convolution). Hyperparameters.

- Filter (kernel) size: width times height.
- Number of filters (kernels).
 Weights are not shared between different filters (kernels)
- Stride: how many pixels the filter moves each time.
- Padding: add zeros around the boundary of the input.

Question 47 (Size Calculation).

Input size: $m \times n \times c_{in}$ Filter size: $a \times b \times c_{in}$ Stride: $s \times t$ Padding: $p \times q$

Output size:

$$\left| 1 + \frac{m+2p-a}{s} \right| \times \left| 1 + \frac{n+2q-b}{t} \right| \tag{90}$$

Part II

For Final

10 Transformer

Question 48 (Attention Layer Inputs and Outputs). Inputs: $V \in \mathcal{R}^{n \times d}$, $K \in \mathcal{R}^{n \times d}$, $Q \in \mathcal{R}^{m \times d}$, Outputs: an $m \times d$ matrix.

- Self Attention: m = n,
- Cross Attention: $m \neq n$ where m is the sequence length of decoder, n is the sequence length of encoder.

Question 49 (Attention Layer Calculation).

Attention
$$(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d}}\right)V$$
 (91)

Softmax is row-wise, i.e. for each row of QK^T , it is normalized to sum to 1.

Question 50 (Learnable Attention Layer).

$$Attention(XW^{v}, XW^{k}, XW^{q}) = \operatorname{softmax}\left(\frac{XW^{q}(XW^{k})^{T}}{\sqrt{d}}\right)XW^{v}$$
(92)

Question 51 (RMSNorm (LLaMA's Choice)).

$$\bar{a_i} = \frac{a_i}{\text{RMS}(a)} \gamma = \frac{a_i}{\sqrt{\frac{1}{d} \sum_{j=1}^d a_j^2}} \gamma \tag{93}$$

Question 52 (Transformer Loss).

$$\min_{W} \hat{\mathbb{E}} \left[-\left\langle Y, \log \hat{Y} \right\rangle \right] \tag{94}$$

Y is output sequence, one-hot;

 \hat{Y} is the predicted probabilities

Question 53 (Transformer Implementation). As following.

```
import torch.nn as nn
import torch.F as F
import math
class RMSNorm(nn.Module):
 def __init__(self, hidden_dim, eps = 1e-6):
    super().__init__()
    self.eps = eps
    self.weight = nn.Parameter(torch.ones(hidden_dim))
 def forward(self, hidden_state):
    norm = hidden_state.pow(2).mean(-1, keepdim = True)
    output = hidden_state * self.weight * torch.rsqrt(norm + self.eps)
    return output
class MultiHeadAttention(nn.Module):
 def __init__(self, hidden_dim, num_heads):
    super().__init__()
    self.hidden_dim = hidden_dim
    self.num_heads = num_heads
    self.head_dim = hidden_dim // num_heads
    self.q_linear = nn.linear(hidden_dim, hidden_dim)
    self.k_linear = nn.linear(hidden_dim, hidden_dim)
    self.v_linear = nn.linear(hidden_dim, hidden_dim)
    self.o_linear = nn.linear(hidden_dim, hidden_dim)
    self.norm = RMSNorm(hidden_dim)
  def forward(self, hidden_state, mask, past_kv = None, use_cache = True):
    bs = hidden_state.shape[0]
    residual = hidden_state
    hidden_state = self.norm(hidden_state) # LLAMA style normalization
    q = self.q_linear(hidden_state) # (bs, seqlen, hidden_dim)
```

```
k = self.k_linear(hidden_state) # (bs, seqlen, hidden_dim)
v = self.v_linear(hidden_state) # (bs, seqlen, hidden_dim)
q = q.view(bs, -1, self.num\_heads, self.head\_dim).tranpose(1, 2)
k = k.view(bs, -1, self.num\_heads, self.head\_dim).tranpose(1, 2)
v = v.view(bs, -1, self.num.heads, self.head.dim).tranpose(1, 2)
# (bs, nums_head, seqlen, head_dim)
q, k = apply_rope(q, k)
# kv cache
if past_kv is not None:
 past_k, past_v = past_kv
 k = torch.cat([past_k, k], dim = 2)
 v = torch.cat([past_v, v], dim = 2)
new_past_kv = (k, v) if use_cache else None
# compute attention
attention\_scores = torch.matmul(q, k.tranpose(-1, -2)) / math.sqrt(self.head.dim)
attention_scores += mask * -1e9
attention_scores = F.softmax(attention_scores, dim = -1)
output = torch.matmul(attention_scores, v)
# concat
output = output.tranpose(1, 2).contiguous().view(bs, -1, self.hidden_dim)
output = self.o_linear(output)
output += residual
return output, new_past_kv if use_cache else output
```

11 Large Language Models

Question 54 (BERT v.s. GPT). BERT is encoder; GPT is decoder.

- BERT predicts middle words; GPT predicts the next word.
- BERT is **NOT** auto-regressive; GPT is auto-regressive.

Question 55 (GPT – Generative Pre-Training).

$$\min_{\Theta} \hat{\mathbb{E}} - \log \prod_{j=1}^{m} \Pr(x_j | x_1, \dots, x_{j-1}; \Theta)$$
(95)

Question 56 (Fine-Tuning Tasks). Supervised fine-tuning tasks:

$$\underset{\text{task-aware supervised loss}}{\min} \underbrace{-\hat{\mathbb{E}} \log \Pr(y|X_{1:m}; \Theta)}_{\text{task-aware supervised loss}} - \lambda \hat{\mathbb{E}} \log \prod_{j=1}^{m} \Pr(x_j|X_{1:j-1}; \Theta)}_{\text{pretraining loss}} \tag{96}$$

Question 57 (BERT \rightarrow RoBERTa). Training longer, with bigger batches, over more data and longer sequence. Removing the next sentence prediction objective.

Question 58 (Sentence-BERT). a twin network architecture that uses BERT to derive sentence embeddings.

Question 59 (GPT-2). 1.5B parameters.

- 10x larger than GPT-1
- Training method is same as GPT-1.
- Performs on par with BERT on fine-tuning tasks.
- Good at zero-shot learning.
- Open-source.

Question 60 (GPT-3). 175B parameters.

• 100x larger than GPT-2.

- Training method is same as GPT-2.
- New phenomenon: in-context learning (ICL, or few-shot learning) and chain-of-thoughts (CoT).

Question 61 (GPT-3.5 – RLHF). Reinforcement Learning from Human Feedback (RLHF).

- \bullet state = prompt
- action = model output
- policy function = LLM
- reward = levels of matching human feedback

Pari-wise comparison loss to train reward model r_{θ} :

$$\mathcal{L}_{\text{pair}}(\theta) = -\frac{1}{\binom{K}{2}} \mathbb{E}_{(x, y_w, y_l)} \left[\log(\sigma(r_\theta(x, y_w) - r_\theta(x, y_l))) \right]$$
(97)

Proximal Policy Optimization (PPO) to maximize objective:

$$\max_{\Phi} \mathbb{E}_{(x,y)} \left[\underbrace{r_{\theta}(x,y)}_{\text{maximize reward}} -\beta \underbrace{\log \left(\frac{\pi_{\Phi}^{\text{RL}}(y|x)}{\pi^{\text{SFT}}(y|x)} \right)}_{\text{model is close to SFT model}} + \gamma \underbrace{\mathbb{E}[\log(\pi_{\Phi}^{\text{RL}}(x))]}_{\text{pretraining loss}} \right]$$
(98)

12 Speculative Sampling

Question 62 (Reject Sampling for Check). Check in parallel.

•
$$r \sim U(0,1)$$
, if $r < \underbrace{\min\left(1, \frac{p(t)}{q(t)}\right)}_{\text{accept rate}}$, next token = t .

• else: next token = $t' \sim \underbrace{\operatorname{norm}(\operatorname{max}(0, p - q))}_{\text{residual distribution}}$.

Question 63 (Proof: Reject Sampling $\equiv t \sim p$).

$$\min(p(t), q(t)) + \max(0, p(t) - q(t)) = \begin{cases} p(t) + 0 & \text{if } p(t) < q(t) \\ q(t) + p(t) - q(t) & \text{if } p(t) \ge q(t) \end{cases}$$

$$= p(t)$$
(99)

$$\Rightarrow \sum_{t} (\min(p(t), q(t)) + \max(0, p(t) - q(t))) = \sum_{t} p(t) = 1$$
 (100)

$$\Rightarrow 1 - \sum_{t} \min(p(t), q(t)) = \sum_{t} \max(0, p(t) - q(t))$$

$$\tag{101}$$

$$\Pr(X = t) = \Pr(\tilde{X} = t) \Pr(\tilde{X} \text{ accept} | \tilde{X} = t) + \Pr(\tilde{X} \text{ reject}) \Pr(\tilde{\tilde{X}} = t | \tilde{X} \text{ reject})$$

$$= q(t) \cdot \min\left(1, \frac{p(t)}{q(t)}\right) + (1 - \Pr(\tilde{X} \text{ accept})) \cdot \operatorname{norm}(\max(0, p(t) - q(t)))$$

$$= \min\left(q(t), p(t)\right) + (1 - \sum_{t} \min\left(p(t), q(t)\right)\right) \cdot \frac{\max(0, p(t) - q(t))}{\sum_{t} \max(0, p(t) - q(t))}$$

$$= \min\left(q(t), p(t)\right) + \max(0, p(t) - q(t))$$

$$= p(t)$$

$$(102)$$

13 Generative Adversarial Networks

Question 64 (Representation through Push-Forward). Let r be any continuous distribution on \mathbb{R}^h . For any distribution p on \mathbb{R}^d , there exists push-forward maps $G: \mathbb{R}^h \to \mathbb{R}^d$ such that

$$z \sim r \Longrightarrow G(z) \sim p$$
 (103)

Question 65 (Discriminator's Goal). For a fixed generator G, minimize a log loss over D:

- If x is real, minimize $-\log D(x)$;
- If x is fake, minimize $-\log(1 D(x))$.

$$\min_{D} -\frac{1}{2} \mathbb{E}_{x \sim p_{\text{data}}} \left[\log D(x) \right] - \frac{1}{2} \mathbb{E}_{z \sim r} \left[\log (1 - D(G(z))) \right]$$
(104)

Question 66 (Generator's Goal). For a fixed discriminator D, maximize a log loss over G:

$$\max_{G} - \frac{1}{2} \mathbb{E}_{x \sim p_{\text{data}}} \left[\log D(x) \right] - \frac{1}{2} \mathbb{E}_{z \sim r} \left[\log \left(1 - D(G(z)) \right) \right]$$

$$(105)$$

Question 67 (Solver).

$$\min_{G} \max_{D} V(G, D) = \mathbb{E}_{x \sim p_{\text{data}}} \left[\log D(x) \right] + \mathbb{E}_{z \sim r} \left[\log (1 - D(G(z))) \right]$$

$$\tag{106}$$

Solved by alternative minimization-maximization:

- G step: Fix D and update G by one-step gradient descent
- \bullet D step: Fix G and update D by one-step gradient descent
- Repeat until the algorithm reaches an approximate equilibrium

Question 68 (Solution of D^*). Let $p_g(x)$ be the density of x estimated by the generator G. For G fixed, the optimal discriminator D is $D_G^*(x) = \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_g(x)}$

Proof:

$$V(G, D) := \mathbb{E}_{x \sim p_{\text{data}}} \left[\log D(x) \right] + \mathbb{E}_{z \sim r} \left[\log (1 - D(G(z))) \right]$$

$$= \int \log D(x) p_{\text{data}}(x) dx + \int_{z} \log (1 - D(G(z))) p_{z}(z) dz$$

$$= \int \underbrace{\log D(x) p_{\text{data}}(x) + p_{g}(x) \log (1 - D(x))}_{f(D(x))} dx$$

$$(107)$$

For any fixed x, taking derivative = 0:

$$f'(D(x)) = \frac{p_{\text{data}}(x)}{D(x)} - \frac{p_g(x)}{1 - D(x)} = 0$$

$$D_G^*(x) = \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_g(x)}$$
(108)

Question 69 (Solution of G^*). The global minimum of $\min_G \max_D V(G, D)$ is achieved if and only if $p_g = p_{\text{data}}$. The optimal objective value is $-\log 4$.

Proof:

$$V(G, D_G^*) = \mathbb{E}_{x \sim p_{\text{data}}} \left[\log D_G^*(x) \right] + \mathbb{E}_{z \sim r} \left[\log (1 - D_G^*(G(z))) \right]$$

$$= \mathbb{E}_{x \sim p_{\text{data}}} \left[\log D_G^*(x) \right] + \mathbb{E}_{x \sim p_g} \left[\log (1 - D_G^*(x)) \right]$$

$$= \mathbb{E}_{x \sim p_{\text{data}}} \left[\log \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_g(x)} \right] + \mathbb{E}_{x \sim p_g} \left[\frac{p_g(x)}{p_{\text{data}}(x) + p_g(x)} \right]$$

$$(109)$$

By definition of KL divergence $\mathrm{KL}(P||Q) = \mathbb{E}_{x \sim P} \left[\log \frac{p(x)}{q(x)} \right]$, we have:

$$V(G, D_G^*) = \mathbb{E}_{x \sim p_{\text{data}}} \left[\log \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_g(x)} \right] + \mathbb{E}_{x \sim p_g} \left[\log \frac{p_g(x)}{p_{\text{data}}(x) + p_g(x)} \right]$$

$$= -\log 4 + \text{KL} \left(p_{\text{data}} \left\| \frac{p_{\text{data}} + p_g}{2} \right) + \text{KL} \left(p_g \left\| \frac{p_{\text{data}} + p_g}{2} \right) \right)$$

$$= -\log 4 + 2 \cdot \text{JSD}(p_{\text{data}} \| p_g)$$

$$\geq -\log 4$$

$$(110)$$

The equality holds if and only if $p_{\text{data}} = p_g$.

14 Adversarial Attacks

Question 70 (Principle of Generating Adversarial Attacks).

$$\max_{\|x_{\text{adv}} - x\|_{\infty} \le \epsilon} \mathcal{L}(C(x_{\text{adv}}), y) \tag{111}$$

where C is the composition of h and f.

Question 71 (Different Solvers). to optimize the adversarial attack.

- Zero-Order Solvers (only access to the output of NN)
 - Black-box attack
- First-Order Solvers (access to the gradient of NN)
 - White-box attack
 - Fast Gradient Sign Method (FGSM), BIM, PGD, CW attack, ...
- Second-Order Solvers (access to the Hessian matrix)
 - White-box attack
 - L-BFGS attack

Question 72 (Holder Inequality). For any $p, q \ge 1$ such that $\frac{1}{p} + \frac{1}{q} = 1$,

$$||x||_p \cdot ||y||_q \ge \langle x, y \rangle \tag{112}$$

where $\langle x, y \rangle$ is the inner product.

 $\|\cdot\|_p$ and $\|\cdot\|_q$ are also known as dual norms.

- $\|\cdot\|_2$ is self-dual.
- $\|\cdot\|_{\infty}$ and $\|\cdot\|_{1}$ are dual norms.

Question 73 (FGSM – Fast Gradient Sign Method). White-box and non-targeted (maximize the loss w.r.t. the true label). Do linear expansion at x:

$$\mathcal{L}(C(x+\delta),y) \approx \underbrace{\mathcal{L}(C(x),y)}_{\text{constant}} + \nabla_x \mathcal{L}(C(x),y) \cdot \delta$$
 (113)

The problem reduces to:

$$\max_{\|\delta\|_{\infty} \le \epsilon} \nabla_x \mathcal{L}(C(x), y) \cdot \delta \tag{114}$$

Because of holder inequality (112), we have:

$$\nabla_{x} \mathcal{L}(C(x), y) \cdot \delta \leq \|\delta\|_{\infty} \cdot \|\nabla_{x} \mathcal{L}(C(x), y)\|_{1} \leq \epsilon \cdot \|\nabla_{x} \mathcal{L}(C(x), y)\|_{1}$$

$$\tag{115}$$

Thus, the adversarial example is generated by:

$$x_{\text{adv}} = x + \epsilon \cdot \text{sign}(\nabla_x \mathcal{L}(C(x), y))$$
 (116)

where ϵ is the perturbation size.

Question 74 (BIM – Basic Iterative Method). BIM is an iterative version of FGSM.

- Initialize $x^{(0)} = x$.
- For k = 1, 2, ..., K:

$$x^{(k)} = x^{(k-1)} + \gamma \cdot \text{sign}(\nabla_x \mathcal{L}(C(x^{(k-1)}), y))$$
(117)

Issues:

- By repeating, the pertubation size ϵ will become larger.
- For a pre-defined ϵ , $x^{(k)}$ may not satisfy $||x^{(k)} x||_{\infty} \le \epsilon$.

Question 75 (PGD – Projected Gradient Descent). To resolve the issue of BIM, PGD involves a truncation operation:

- Initialize $x^{(0)} = x + \delta$, where $\delta \in (-\epsilon, \epsilon)$.
- For k = 1, 2, ..., K:

$$x^{(k)} = \operatorname{clip}_{(-\epsilon,\epsilon)}(x^{(k-1)} + \gamma \cdot \operatorname{sign}(\nabla_x \mathcal{L}(C(x^{(k-1)}), y)))$$
(118)

where $\operatorname{clip}_{(-\epsilon,\epsilon)}(x)$ projects x back to the ℓ_{∞} ball of radius ϵ around x.

Question 76 (Targeted PGD Attack). Objective:

• Untargeted:

$$\max_{\|\delta\|_{\infty} \le \epsilon} \mathcal{L}(C(x+\delta), y_{\text{true}}) \tag{119}$$

• Targeted:

$$\min_{\|\delta\|_{\infty} \le \epsilon} \mathcal{L}(C(x+\delta), y_{\text{target}}) \tag{120}$$

15 Adversarial Robustness

Question 77 (Defense Mechanisms). Categorized into two types:

- Gradient Masking: hide the gradients and make first-order attacks fail
 - Shasttered Gradients By applying a non-smooth or non-differentiable preprocessor g to the inputs, and then training a DNN model f on the preprocessed inputs g(x).
 - Stochastic/Randomized Gradients Apply some form of randomization of the DNN model. E.g. train a set of classifiers
 and during the testing phase randomly select one classifier to predict the labels.
- Adversarial Training:

$$\min_{C} \mathbb{E}_{(x,y)\sim\mathcal{D}^n} \left[\max_{\|\delta\|_{\infty} \le \epsilon} \mathcal{L}(C(x+\delta), y) \right]$$
 (121)

Question 78 (Trade-Off between Natural and Robust Error).

$$\min_{f} R_{\text{nat}}(f) + R_{\text{rob}}(f)/\lambda \tag{122}$$

$$R_{\text{nat}}(f) := \Pr_{x,y \sim \mathcal{D}} \{ f(x)y \le 0 \}$$

$$= \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\mathbb{I}(f(x)y \le 0) \right]$$
(123)

$$R_{\text{rob}}(f) := \Pr_{x,y \sim \mathcal{D}} \{ \exists \delta \in B_{\epsilon}(x) \text{ s.t. } f(x+\delta)y \leq 0 \}$$

$$= \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\max_{\|\delta\|_{\infty} \leq \epsilon} \mathbb{I}(f(x+\delta)y \leq 0) \right]$$
(124)

Approximate by a differentiable surrogate loss Φ :

$$R_{\text{nat}}(f) \approx \mathbb{E}_{(x,y)\sim\mathcal{D}}\left[\Phi(f(x)y)\right]$$
 (125)

Question 79 (TRADES).

$$\min_{f} \left[\underbrace{\mathbb{E}_{(x,y)\sim\mathcal{D}}\left[\Phi(f(x)y)\right]}_{\text{minimize diff btw } f(x) \text{ and } y \text{ for accuracy}} + \underbrace{\mathbb{E}_{(x,y)\sim\mathcal{D}}\left[\max_{\|\delta\|_{\infty} \leq \epsilon} \Phi(f(x+\delta)f(x))\right]}_{\text{minimize diff btw } f(x) \text{ and } f(x+\delta)forrobustness} \right] \tag{126}$$

TRADES Loss

16 Self-Supervised Learning

Question 80 (Contrastive Learning). Loss:

$$\max_{\Theta} \Pr_{1} = \frac{\exp(z_{1})}{\sum_{j} \exp(z_{j})}$$
 (127)