(CS480/680, Spring 2025
Review Notes

Student: Hongxu Xu (h445xu@uwaterloo.ca)
August 5, 2025

Part I
For Mid-Term

1 Perceptron
Question 1 (Linear Function).

VafB € R\Va,z € R flax + f2z) =a- f(X)+ 8- f(2)
—3Jw e RY, f(x) = (x, w)

Proof =: Let w = [f(e1),..., f(eq)]”, where e; is the i-th coordinate vector.

f(x) = f(rie1 + -+ x4€q)
zi1f(ex) +- - +zaf(ea)
= (a:,w>

Proof «:
flax + Bz) = (ax + Bz, w)
= (ax,w) + (fz, w)
=a(x,w) + B (z,w)
=af(x) + Bf(2)

—\

Question 2 (w is Orthogonal to Decision Boundary H). Any vector on H can be written as xa’ = ' — «,

(@' —z,w) = (2',w) — (x,w) = -b—(-b) =0
Question 3 (Update Rule for Perceptron).

w — W+ Y x;

Question 4 (Feasibility of Perceptron). The goal is to find w € R% b € R, such that Vi, y; ((z;, w) + b)
According to the update rule

Y [<-73; wnew> + new] =Y [T, Word + y33> + bora + y]
[T, Woid) + bold} +y K.CB, y$> + y]

(

()

(@, wora) + botd] +y [y lll3 + y}
()

()

Yy
Yy
y [(, Wota) + bota] + ¥* 2|5 + 3
y

(2, Wota) + bota] + |5 + 1
——

always positive

Notice that y € {#1} = y? = 1.
Hng + 1 is always positive, which means we always increase the confidence yj after the update.

Question 5 (Trick for Hiding the Bias Term — Padding).

worsa-{(3).(5)

= (Tpad; Wpad)
Correspondingly, the update rule can be written as:
Wpad < Wpad + YTpad
Question 6 (Margin). Suppose Jw™* such that Vi, y; (x;, w*) > 0.

We normalize w* such that ||w*|, = 1.
In other words, w™ is the normalized weight for the deicision boundary.

Margin v = min |{x;, w*)|
K2

> 0.

Question 7 (Convergence Theorem — Linearly Separable Case). Assume that Vi, ||x;]|, < C (i.e. within a circle with radius C).

Then the Perceptron algorithm converges after %22 mistakes.

Proof:

Suppose w is the updating weight, and 6 is the angle between w and w*.
We have (w, w*) = ||lw]|, [|w*|, cos 8 = ||lw]|, cosb.

After an update, ||[Wnewl5 cOS Onew Will be

(w+yz,w*) = (w,w") +y(z,w")
= (w, w") + [(z, w™)|
> (w,w*) + 7

Let’s see the change of (Wnew, Wnew) = H'wmm,Hg7

(w+yz, w+yz) = (w,w) + 2y (w,z) +y* (2,2

Because y (w,x) < 0 and ||, < C,

Finally, suppose it converges after M updates, we have (w,w*) > M~ and ||ng < MC?

. 2
which means M < %

Question 8 (Perceptron Loss).

2 Linear Regression

Question 9 (Least Square Regression).

The optimal regression function is

(w+yz, w + yz)

2 2
= [lwllz + 2y (w, z) + [z

< |wl; + C?

(w, w™)
||w||2 Hw*||2
> My
T VMC?x1

vl
= M—
C

1=cosb =

l(w, ¢, y:) = —yt (w, 2¢) [[mistake on ay]

— —1min {yt <w, :13,> aO}

1 n
L(w) = n Z Yt (w,) [[mistake on xy]
t=1

. 2
Jhuin BIF(X) =Y,

fH (@) =m(z) = E[Y|X =]

Calculating it needs to know the distribution, i.e., all pairs (X,Y).

Question 10 (Bias-Variance Decomposition).

E|f(X)-Y|;=E[f(X)-

m(z) = Y|l

3

T

2 2
= [[wlly + 2y (w, z) + [l[;

(10)

(11)

(13)

—m(x)|l3 + E|jm(z) = Y5+ 2B (f(X) —m
I3+ Ellm(z) = Y5 +E Eyx [(f(X

)+

) (x

) (

)|+ Ellm(z) - Yl; + E(f(X) —m
) (

) (z

~—
8
~—
3
—~
8
~—
\
=~
~

—m

)

)

)
X)—m

)

)

T

—~
8

2)l5 +E[m(z) - Y5 + E(f(X) —m
) - Y3

—m

(
(
(
(
(
(

—m()|l3 +E jm(x

noise (variance)

The last term is the noise (variance), irrelevant to f. So, to minimize the squared error, we need f = m.
However, m(x) is incalculable, because E[Y'|X = x] is unknown.
Let’s learn fp from the training data D. Define f(X) = Ep[fp(X)].

Ex,v,p |lfo(X) = Y| =Ex [|/p(X) — m(z)|; + Ex,y [|m(z) — Y||5

test error

=Ex.p||fp(X) - F(X) + F(X) - m(@)|; + Exy [m(z) - Y|
=Ex,p ||fo(X) - f(X)||§ +Ex || £(X) —m@“)Hz

+2Ex,p (fp(X) — f(X), f(X) —m())

+Exy [m(=) - VI3
=+ 2ExEp (fp(X) — F(X), F(X) — m(x)) + ... (19)
=+ 2Bx (Ep[fp(X)] — f(X), f(X) — m(z)) +
=+ 2Ex (f(X) — [(X), [(X) —m(
=40+
=Ex.p || /p(X) — F(X)|; + Ex || /(X) — m(z)|]3 + Exy [m(z) — Y]
=Ex.p | fp(X) ~ Ep[fp(X)]ll; + Ex |Eplfp(X)] — m(2)|3 +Ex.y |m(z) - Y|

variance bias? noise (variance)

Question 11 (Sampling — Training). Replace expectation with sample average: (X;,Y;) P.

Jmin B|7(X) - V3= an ~Yill3 (20)

Uniform law of large numbers: as training data size n — argmin[E,
E — E and (hopefully) argminE — E.

Question 12 (Linear Regression). Padding: @ + () W (VZ)

X =[@q,...,z,] € REUTDXR
Y = [ylv' .. 7y’n] € Rtxnv
W e]Rtx(d-‘rl)7

Al = ‘/Za‘?j
ij

—|wx -y 21
Weéﬁi?dmn” % (21)

Linear regression is:

Question 13 (Optimality Condition). If w is a minimizer (or maximizer) of a differentiable function f over an open set, then

f(w) =0.
Question 14 (Solving Linear Regression).
L) =~ [WX -~V (22
Vw L(W) = %(WX -xT =0
= Wxx? =yxT (23)
=W=vXxT(xxT)~!

Question 15 (Ill-Conditioning). Slight pertubation leads to chaotic behavior, which happens whenever X is ill-conditioned, i.e.,
(close to) rank-deficient.

Rank-deficient X means:
1. two columns in X are linearly dependent (or simply the same)

2. but the corresponding y might be different

Question 16 (Ridge Regression).
1 2 2
min WX = Y3 + AW

VwL(W) = %(WX V)X +22W =0
=WXXT —YXT 4+ AW =0
= W(XXT +n)\)=YXT

X=UxvT
=XxXT =vux(vtv)zuT = ux*uT
SXXT A =U (2% +nAI) U
-

strictly positive

=XXT 4+ n\I is of full-rank

A is regularization parameter. A = oo = W = 0.

Question 17 (Regularization = Data Augmentation).

LIWX - YIEA R = w [x var] - o

3 Logistic Regression

Question 18 (Max Likelihood Estimation). Let J = {0,1}. Learn confidence p(x;w) := Pr(Y = 1|X =).

muz}xPr(Yl =Y, Y =Yn) = mq%XHPr(Yi = ;| X; = x;)
i=1

Use negative log-likelihood:
min E [—y: log p(xs;w) — (1 — y;) log(1 — p(ai; w))]
w

i=1

Question 19 (Odds Ratio and Sigmoid).

Pr
Odds Ratio =
s Ratio = -—-
Assume log 13(1)?;‘;)1]) = (x, w).
The Sigmoid transformation is:
1
p(x; w)

1+ exp(— (x, w))
Question 20 (Logistic Regression). Plug the sigmoid in the negative log-likelihood:

min [~yilog p(ai; w) — (1 - yi) log(1 — p(wi; w))]
=1

ngnil {y log[1 + exp(— (x4, w))] — (1 — y;) log (1 : H

1+ exp(— (z;, w))

oot)

—miny” [y log[L + exp(— (s, w))] — (1 - y,) log (

i=1

= Hgnz [yilog[1 + exp(— (zi, w))] + (1 — y;) [(@s, w) + log(1 + exp(— (z, w)))]]

= min’>" flog[1 + exp(— (@i, w))] + (1 - y:) (s, w)]
i=1

(24)

(25)

(26)

(28)

(29)

(30)

Because y; € {0,1}, let’s map it to {£1}.

L(w) " 1og[1 + exp(— (a3, w))] + (1 — vi) {5, w)

L Log[1 + exp(— (@5, w))] + log [exp((1 — i) (w3, w))]

vie{0.1} log[1 + exp(— (x;, w)) - exp((1 — y;) (T4, w))]

vi€{0.1} loglexp((1 — ;) (x4, w)) + exp(—y; (xs, w))]

vic{0.1} loglexp({x;, w)) + 1] y; =0
log[1 + expl(— (s, w))] 3 = 1

UL Jogl1 + exp(—y: (s, w))]

Question 21 (Multi-Class: Sigmoid — Softmax).

Y = HX =W = s, owel) = 2 S

Maximum likelihood estimation (log loss, cross-entropy loss):

min Y —1lo exp((z, wg))
w ; [o Zlczl exp((z, wy))

4 Hard-Margin Support Vector Machines

Question 22 (Distance from a Point to a Hyperplane). Let H := {x : (x,w) + b = 0}, be any vector in H.

| —a,w) | | (w5, w) — (@, w) | wen |[(®i,w) +b] yigi>0 yili

Distance(x;, w) = =

[[wll [[wlly [[wll, |l

Question 23 (Margin Maximization). Margin is the smallest distance to H among all separable data.

max min M, such that Ve, y;9; > 0
wb 0wl

Let ¢ > 0, then w = cw, b = cb keeps the loss same:

.Yl . yi((z, cw) + cb)
max min = max min ¥———~L — —~
B owlly BT el
= max min —cyi((:c, w) +)
Y P

Let ¢ = 1

min; y;y; ’

.Yl 1
max min = max —/———
wb o clwly, wb cllwl,

Max — Min:

1
min — ||'w||§ s.t. Vi, yy; > 1
w,b 2
Question 24 (Hard-Margin SVM v.s. Perceptron).

1
Hard-Margin SVM: mi? 3 Hw||§ s.b. Vi g > 1

Perceptron: min 0 s.t. Vi,y;y; > 1

w,b

(33)

(34)

(35)

(37)

(39)

Question 25 (Lagrangian Dual). Dual variables a € R™.

%lll)l max o H'w||2 g a; [y;({(z;, w) + b) — 1] = min
1 2 ‘
= mlil —|lwlly, st Vi, y({x;,w) +0) > 1

= min ||w||2 s.t. Vi, y;g; > 1
w,b

Swap min and max:

o1 2
max min o |wllz — Zai [yi((zs, w) +b) — 1]

Solve inner problem by setting derivative to 0:
))
%:w_zi:aiyiwi:(l %:_Zaiyizoy
Plug them into the loss:

L) = min 5 [} = Y e (o, 0) +) — 1
2
- % Z XiYii) — Z iy (T, w) — Z a;yib+ Z Q;
i 9 i i ;
2
= 5| e - <Zai%““i’ Zai%‘wi> —bY ity a
1 7 g 2 , 7 i i
=3 > aiyiwi|| — | +) o
% 9 9 ’i
2
:Zaifé R s.t. Zaiyi:()
i 2 i

T

i T

So, [A4] is solved as:

i

2
, S.t. Zaiyq; =0
2 7

1
max E Q; — <
a>0 “— ¢ 2

i

Max — min and expand the norm:

mln Z a; + Z Z 0405y (@i, 25) , s.t. Z oy, =0
N i

Kernel, closed form w.r.t. ;,z;

Question 26 (Support Vectors). From we know w = >, ;5.
Vectors with «; # 0 are support vectors, which lie on the margin.

5 Soft-Margin Support Vector Machines
Question 27 (Goal). minimize over w, b,

Pr(Y #sign(Y)) =Pr(YY <0)=E I[YY <0 =El_ (YY)

indicator function

where YV = (X,w)+b,Y =+£1.

‘min Ely (YY) = min ExEy|x lo- (YY)
ViXoR ViR

—EX min]Ey|X lo 1(YY)
Y:X—R

Minimizing the 0-1 error is NP-hard.

+OO, if Ellayl(<mlaw> + b) <1 (al =
Dlwlz, if Vi, yi((zs, w) +b) > 1 (Vi,a; = 0)

+00)

(45)

(46)

(50)

Question 28 (Bayes Rule).

n(x) = argmax Pr(Y = g|X = x) (51)
J€ER

n(x) = argmin By |x_z lo—1(Y9) (52)
JER

Question 29 (Classification Calibrated). A loss I(yg) is classification calibrated, iff Ve,

§(x) == argmin Ey | x5 1(Y9)
gER

has the same sign as the Bayes rule n(z) = argmingcg Ey|x—z lo-1(Y7)
Notice: n(x), §(x) provide the score, their sign provides the prediction.

Question 30 (Characterization under Convexity). Any convex loss [is classification calibrated iff [is differentiable at 0 and I(0) < 0.

Question 31 (Hinge Loss).

X X N L—yy, ifyg<l1
Ihinge(yy) = (1 = y)" = max{0,1 - yg} = : (53)
0, otherwise
The classifier that minimizes the expected hinge loss minimizes the expected 0-1 loss.
Question 32 (Soft-Margin SVM).
1 2 X N
Question 33 (Lagrangian Dual). Apply C - lpinge(t) :== max{0,C(1 — t)} = maxo<a<c a(l — 1)
wip 5 ol = Seult i) %%)
Swap min with max:
5 7 191 56
[Dhax_ min 5 lelz+za — i) (56)
Solve it by setting derivative to 0:
1))
%:w—zi:aiyimiz(), 55 :—zi:aiyi:O, (57)
Plug them into the loss:
pax m HllIl ~ w2 + Zaz —yil)i) = Oglaé(len = |'w||2 + Zaz (1 —yi((zi, w) +b)]
(58)

= max E o; —
0<a<C 4=
3

, s.t. Z a;y; =0
2 %
Max — min and expand the norm:
ogmairglc Zal ZZaza]y,y] (@i, ;) , s.t. Zaiyi =0 (59)
Kernel, closed form w.r.t. ax;,x; ‘

C — oo = Hard-margin SVM, C' — 0 = a constant classifier

6 Reproducing Kernels

Question 34 ((Reproducing) Kernels). k& : (X) x X — R is a (reproducing) kernel iff there exists some ® : X — H so that
(®(x), ®(2)) = k(z, 2).

e A feature transform ® determines the corresponding kernel k.

e A kernel k determines some feature transforms ®, but may not be unique.
E.g. (¢(x), ¢(2)) = (¢'(x), ¢'(2))
1. ¢(x) = [22,V2z125] € R?

2. ¢'(x) = [22, 2129, 7172] € R3

Question 35 (Mercer’s Theorem). k: X x X — R is a kernel,
iff Vn € N,Vaq,...,z, € X, the kernel matrix K such that K;; = k(x;, ;) is symmetric and positive semi-definite (PSD).

k is a kernel < {fiﬂ [;af;ﬂ: ST ey 20 Ve E;y;;r;letrw)
Question 36 (Symmetric PSD). For a symmetric matrix A, the following conditions are equivalent.

1. A>0

2. A=UTU for some matrix U

3. 27 Az > 0 for every x € R”

4. All principal minors of A are nonnegative

7 Gradient Descent

Question 37 (Gradient Descent Template). Choose initial point 2 € R? and repeat:

a® = k=) o gD k=12, (61)

step size

Question 38 (Interpretation from Taylor Expansion). Expand f locally at :

Fl) = F@)+ V) (g~) + oy =l
(62)

1 2
ly — |3

= min f(y) ~ min | f(z) + Vi) (y—2)+ 5

8

When y —x = v_,;;()

= —tVf(z) = y =z — tV f(x), it reaches the minimum.

Bl

Question 39 (L-smooth or L-Lipschitz Continuous). f is convex and differentiable. V f is L-Lipschitz continuous (L-smooth):
LI = V?f(z),Vz (63)

Question 40 (Convergence Rate for Convex Case). Assume f is L-smooth. Gradient descent with fixed step size t < % satisfies:

2
_ e

) I (3 [—2 64
P - far) < (64)
We say gradient descent has convergence rate O(3), i.e. f(z®) — f(z*) < € can be achieved using only O(2) iterations.

Proof

Fl) = 1)+ V)~) + (o~) FE)y)

< @)+ V@) () + 5Lyl (L-smooth, LI = V(&) v
Plug in gradient descent:
f@™) = fy)
< (@) + VI @) (@~ V() ~) + 3 L llo 197 (x) —
(66)

= (@)~ (1= S LV ()13

< @) - StIVI@IE (<

)
J is convex = f(a*) > f(2) + VA(X)T (" —a) = f(2) < f(a*) + V(@) (& - 2*)

Plug this into

<

Fat) < @) + VI @ - 27) ~ StV

2V f ()T (x — z*) — HVf(:v)IIS)

< <
— —
8 8
+ +
~— ~—
\ |
[y [y
~— —
8 8
* *
IN - IA

2V (@) (@ — 2*) = 2 [V F @)~ o = "3+ o — 2713

[y <
— —
8 8
+ +
~— ~—
| \
~ [y
— —
8 8
* *
IN - IN

o= "1} = e — 2”1V (@)1

o — 271} = |2+ - 2[13)

~
—
8
+
~—
[
~
—~
8
*
IN

(
(
(lle = @113 = (lz = 213 + £ IV S @)I13 — 26V /(@) (@ — 2*)))
(
(

2] 2] 2]] g

Viewing 2t as 2 and z as z(*~1:

- () 1 (i-1) 2 (i) 2
7 1—1 * 7 *
> (e - £@) = 3 5 (e = o[= o - o])
=1 =1
1 2 2
_ L Hx(m_x* _Hm(k)_x*)
2t 2 2
< inm)_x* g
2 2

which implies
=0 — 2|,

k
()
< 2SN 1+ Ty

??\)—l

Question 41 (Convergence Rate for Strong Convexity). f is differentiable, L-smooth, and m-strongly convex.

m-strong convexity of f means f(x) — ||ac||2 is convex, i.e. V2f(z) = mI
Then, there is a constant 0 < v < 1 such that gradient descent with fixed step size ¢t < + —= satisfies:

2

FE®) — @) < E o —

2

Rate is O(y*). Only O(logs (1)) iterations needed.

Question 42 (Convergence Rate for Non-Convex Case). f is differentiable and L-smooth, but non-convex.
Gradient descent with fixed step size t < % satisifes:

Fla® —
i, [ere], < VPR

Rate is O(ﬁ) for finding stationary point. O(Z) iterations are needed.
Question 43 (Convergence Rate for Stochastic Gradient Descent). For convex and L-smooth f,

e Gradient Descent .
1
wt :w—t-EZVfi(w)
i=1

— Step size t < %
— Time complexity O(%)

e Stochastic Gradient Descent
w+ = w - t : vf]'r‘ando?n (w)

— Step size t = %, k=1,2,3,... (adaptive step size)
— Time complexity O(%)

(70)

(72)

(73)

8 Fully-Connected Neural Networks

Question 44 (Forward and Backward Pass of a 2-Layer MLP). A 2-layer MLP (k is the NN width, ¢ is the output dim):

x = input (x € RY) (74)
2=Wax+ by (W € R**? 2 b e RY) (75)
h = ReLU(z) (h € R¥) (76)
6 =Uh + by (U € R*,0,by € R) (77)
1
J =310 - yll; (y €R°, T €R) (78)
ReLU =& ¥70 (79)
0 <0
1
ReLU’ = { v>0 (80)
0 =<0
Backward pass (® is the Hadamard product, i.e. element-wise product):
5.J
s R 1
50 y (81)
§J 6J 66 -
50 =56 °50 ~ @ vk (82)
5J 8J 46
E_EOE_G_Z] (83)
6J 0J 60
- 30°5h (6 —1y) (84)
] - /
S =5 %5, =UT(0-y) OReLU'(2) (85)
6J _ (Si 57Z 7T ! T
sw =52 5 = U (0 — y) ® ReLU'(2)x (86)
8] 6J 6z o /
b =025, = U (0 — y) ©@ ReLU'(2) (87)
(88)

Question 45 (Universal Approximation Theorem by 2-Layer NNs). For any continuous function f : R? — R¢ and any e > 0, there
exists k € N, W € RF¥4 b c R*, U € R°** such that

sup || f(=) g(@)lly <€ (89)

where g(x) = U(oc(Wax + b)) and o is the element-wise ReLU operation.
As long as the 2-layer MLP is wide enough, it can approximate any continuous function arbitrarily closely.

9 Convolutional Neural Networks

Question 46 (Controlling the Convolution). Hyperparameters.
e Filter (kernel) size: width times height.

e Number of filters (kernels).
Weights are not shared between different filters (kernels)

e Stride: how many pixels the filter moves each time.
e Padding: add zeros around the boundary of the input.
Question 47 (Size Calculation).

Input size: m X n X ¢y,
Filter size: a X b X ¢,
Stride: s x t
Padding: p x ¢

2p — 2q —
{H””Sp“J y {H’thbJ (90)

Output size:

Part II
For Final

10 Transformer

Question 48 (Attention Layer Inputs and Outputs). Inputs: V € R"*4 K € R™*?4 Q € R™*? Outputs: an m x d matrix.

e Self Attention: m =n,

e Cross Attention: m # n where m is the sequence length of decoder, n is the sequence length of encoder.

Question 49 (Attention Layer Calculation).

Attention(Q, K, V) = softma <QKT) 14
ntion(Q), K, = max | ——
Vd

Softmax is row-wise, i.e. for each row of QK7 , it is normalized to sum to 1.
Question 50 (Learnable Attention Layer).
XWa(XWkT

Attention(X W, XW¥, XW1) = softmax <
() Nz

)xw

Question 51 (RMSNorm (LLaMA’s Choice)).

G = oy R,
‘7 RMS(a) ' d
(a) éZj:ﬂZ?

Question 52 (Transformer Loss).

Y is output sequence, one-hot;
Y is the predicted probabilities

Question 53 (Transformer Implementation). As following.

import torch

import torch.nn as nn
import torch.F as F
import math

class RMSNorm (nn.Module) :
def __init__(self, hidden_dim, eps = le-6):

super () .__init__()
self.eps = eps
self.weight = nn.Parameter (torch.ones (hidden_-dim))

def forward(self, hidden_state):
norm = hidden_state.pow(2) .mean (-1, keepdim = True)
output = hidden_state % self.weight * torch.rsqgrt (norm + self.eps)
return output

class MultiHeadAttention (nn.Module) :
def __init__(self, hidden_dim, num_heads):

super () .__init__()
self.hidden.dim = hidden._dim
self.num-heads = num-heads

self.head.dim = hidden_.dim // num_heads
self.g.-linear = nn.linear (hidden_dim, hidden_-dim
self.k_-linear = nn.linear (hidden_.dim, hidden_-dim
self.v_.linear = nn.linear (hidden_.dim, hidden_dim
self.o_.linear = nn.linear (hidden_.dim, hidden_dim
self.norm = RMSNorm (hidden_dim)

)
)
)
)

def forward(self, hidden_state, mask, past_kv = None, use_cache = True):
bs = hidden_state.shape[0]

residual = hidden_state
hidden_state = self.norm(hidden_state) # LLAMA style normalization

q = self.g.linear (hidden_state) # (bs, seqglen, hidden_dim)

(92)

(93)

(94)

~

= self.k_linear (hidden_state) # (bs, seqglen, hidden-dim)
self.v_linear (hidden_state) # (bs, seglen, hidden_-dim)

<
[}

o] g.view(bs, -1, self.num_heads, self.head-dim) .tranpose(l, 2)
k = k.view(bs, -1, self.num_heads, self.head.dim).tranpose(l, 2)
v = v.view(bs, -1, self.num_heads, self.head.dim).tranpose(l, 2)
(bs, nums_head, seqglen, head._dim)

d, k = apply-rope(q, k)

kv cache
if past_kv is not None:

past_-k, past_v = past_kv

k = torch.cat ([past_k, k], dim = 2)

v = torch.cat ([past-v, v], dim = 2)
new_past_kv = (k, v) if use_cache else None

compute attention

attention_scores = torch.matmul (q, k.tranpose(-1, -2)) / math.sqgrt(self.head_-dim)
attention_scores += mask * -1le9
attention_scores = F.softmax(attention_scores, dim = -1)

output = torch.matmul (attention_scores, V)

concat
output = output.tranpose(l, 2).contiguous() .view(bs, -1, self.hidden_dim)

o_linear
output = self.o_linear (output)

output += residual

return output, new_past_kv if use_cache else output

11 Large Language Models
Question 54 (BERT v.s. GPT). BERT is encoder; GPT is decoder.

e BERT predicts middle words; GPT predicts the next word.

e BERT is NOT auto-regressive; GPT is auto-regressive.
Question 55 (GPT — Generative Pre-Training).

Irgnlﬁl —log H Pr(zjlz1,...,2;-1;0)
j=1

Question 56 (Fine-Tuning Tasks). Supervised fine-tuning tasks:

m
ngn —Elog Pr(y|X1.m; ©) —AE log H Pr(z;|X1.;-1;0)

j=1

task-aware supervised loss

pretraining loss

Question 57 (BERT — RoBERTa). Training longer, with bigger batches, over more data and longer sequence.

Removing the next sentence prediction objective.
Question 58 (Sentence-BERT). a twin network architecture that uses BERT to derive sentence embeddings.
Question 59 (GPT-2). 1.5B parameters.
e 10x larger than GPT-1
e Training method is same as GPT-1.
e Performs on par with BERT on fine-tuning tasks.
e Good at zero-shot learning.
e Open-source.
Question 60 (GPT-3). 175B parameters.

e 100x larger than GPT-2.

(95)

e Training method is same as GPT-2.

e New phenomenon: in-context learning (ICL, or few-shot learning) and chain-of-thoughts (CoT).
Question 61 (GPT-3.5 — RLHF). Reinforcement Learning from Human Feedback (RLHF).

e state = prompt

e action = model output

policy function = LLM

reward = levels of matching human feedback

Pari-wise comparison loss to train reward model ry:
1
»Cpair(g) = _WE(%yw,yl) [log(o(m ((E, yw) —To (l’, yl)))}
2

Proximal Policy Optimization (PPO) to maximize objective:

max roey) —8 log (T2 WELY L pog(aRt ()
L et T (yle) —
maximize reward pretraining loss

model is close to SFT model

12 Speculative Sampling
Question 62 (Reject Sampling for Check). Check in parallel.

p(t)
q(t)

accept rate

e r~U(0,1), ifr < min (1, >, next token = t.

e clse: next token = ' ~ norm(max(0,p — q)).

residual distribution

Question 63 (Proof: Reject Sampling = ¢ ~ p).

. _ Jp®)+0 if p(t) < q(?)
min(p(t), ¢(t)) + max(0, p(t) — q(t)) = o)+ p(t) — q(t) i p(t) > a(t)
=p(t)

=) (min(p(t), q(t)) + max(0,p(t) — q(t))) = > _p(t) =1

t

=1-Y min(p(t),q(t)) = > _ max(0,p(t) — q(t))

Pr(X =t) = Pr(X = t) Pr(X accept|X =t) + Pr(X reject) Pr(X = t|X reject)

= ¢(t) - min <1, p(t)) + (1 = Pr(X accept)) - norm(max(0, p(t) — q(t)))

q(t)
— min (g(t), p(t)) + (1 — 3 min (p(t), 4(£)) Zm:;g(g(;)(t;f(;)&))

= min (¢(¢), p(t)) + max(0, p(t) — q(t))
=p(t)

13 Generative Adversarial Networks

(100)

(101)

(102)

Question 64 (Representation through Push-Forward). Let r be any continuous distribution on R". For any distribution p on R?

there exists push-forward maps G : R* — R¢ such that
z~r = G(z)~p

Question 65 (Discriminator’s Goal). For a fixed generator G, minimize a log loss over D:

(103)

e If z is real, minimize — log D(z);

e If z is fake, minimize —log(1 — D(z)).

it~ Eup., 08 D(&)] — 3E-e log(1 ~ D(G(:)] (104)

Question 66 (Generator’s Goal). For a fixed discriminator D, maximize a log loss over G:

085 — By [log D()] — SE- log(1 ~ D(G(=)))] (105)
Question 67 (Solver).
min max V(G D) = Eypy, 08 D(@)] + oy [l0g(1 — D(G(2)] (106)

Solved by alternative minimization-maximization:
e G step: Fix D and update G by one-step gradient descent
e D step: Fix G and update D by one-step gradient descent
e Repeat until the algorithm reaches an approximate equilibrium
Question 68 (Solution of D*). Let py(z) be the density of = estimated by the generator G. For G fixed, the optimal discriminator

. % _ D nta(z)
Dis Dg(x) = 5t @

Proof:

V(G, D) i= Eanpi, [log D(a)] + Eany [log(1 — D(G(2))]
— [o D@)pasaladr+ [log(t — DIG(:))p-(2)ds

(107)
= /log D(x)paata(z) + pg(x) log(l — D(z)) dz
f(D(=))
For any fixed z, taking derivative = 0:
fl(D(.T)) _ pdata<m) _ pg(l') -0
D(z) 1—D(x) (108)

* (J:) — pdata(x)
pdata(x) -l-pg (QL‘)
Question 69 (Solution of G*). The global minimum of ming maxp V (G, D) is achieved if and only if p; = pdata- The optimal
objective value is —log 4.
Proof:
V(G,Dg) = Eonpy,. l0g Di(2)] 4+ E.ny [log(1 — Dg(G(2)))]
= Eonpaua 108 D ()] + By, [log(1 — Dg ()]

@ @ e
Pdatal\T Pg\x
= EIN ata 10 —_—| t Ezw :|
fe { & Pdata(2) + pg(x)] P | pdata() + py(2)
By definition of KL divergence KL(P| Q) = E,p [log %}, we have:
* Pdata() } { py(x)]
V(G, D) = Eyep,... [log — L) |4 log— Lo
() o [8 Pdata(T) + pg(f) b & Pdata(T) + pg(x)
+ +
= —log4 + KL (pdata”pdatng) +KL (pgllpdatng> (110)

=—logd+2- JSD(pdataHpg)
> —log4

The equality holds if and only if pgata = pg-

14 Adversarial Attacks

Question 70 (Principle of Generating Adversarial Attacks).
max L(C(Zadv),Vy)

[aay —z|| o, <e
where C' is the composition of h and f.
Question 71 (Different Solvers). to optimize the adversarial attack.
e Zero-Order Solvers (only access to the output of NN)
— Black-box attack
e First-Order Solvers (access to the gradient of NN)

— White-box attack
— Fast Gradient Sign Method (FGSM), BIM, PGD, CW attack, ...

e Second-Order Solvers (access to the Hessian matrix)

— White-box attack
— L-BFGS attack

Question 72 (Holder Inequality). For any p,q > 1 such that % + é =1,

2, - lylly = (2, 9)

where (z,y) is the inner product.

| - ||, and || - ||q are also known as dual norms.
o || |2 is self-dual.
o |||l and || - |1 are dual norms.

Question 73 (FGSM — Fast Gradient Sign Method). White-box and non-targeted (maximize the loss w.r.t. the true label).

Do linear expansion at x:
L(C(z +6),y) = L(C(x),y) +V. L(C(x),y) - §
—_———

constant

The problem reduces to:
 nax Vi L(C(x),y) - 6

Because of holder inequality (112)), we have:
Vo L(C(x),y) - 6 < [I6]l - IV2L(C (), y)ll; < € [V L(C(2),y)l
Thus, the adversarial example is generated by:
Tadv =T T € &gn(VxL'(C’(x), y))
where € is the perturbation size.
Question 74 (BIM — Basic Iterative Method). BIM is an iterative version of FGSM.
e Initialize z(*) = z.

e Fork=1,2,...,K:
ok = 207 4y sign(V,.L(C(x*Y), y))

Issues:

e By repeating, the pertubation size € will become larger.

k)

e For a pre-defined ¢, (*) may not satisty ||z*) — z|,, <.

Question 75 (PGD — Projected Gradient Descent). To resolve the issue of BIM, PGD involves a truncation operation:

e Initialize (%) = x + 4, where 6 € (—¢,e).

e Fork=1,2,...,K:
2™ = clip_ o (@*) + 5 - sign(V,L(C(z*7V), 1))

(111)

(112)

(113)

(114)

(115)

(116)

(117)

(118)

where clip_, .)(z) projects x back to the £ ball of radius € around z.

Question 76 (Targeted PGD Attack). Objective:

e Untargeted:

(hax L(C(z+9), Yurue) (119)
e Targeted:
Holinn< L(C(JZ + 5)a ytarget) (120)

15 Adversarial Robustness

Question 77 (Defense Mechanisms). Categorized into two types:
e Gradient Masking: hide the gradients and make first-order attacks fail

— Shasttered Gradients By applying a non-smooth or non-differentiable preprocessor g to the inputs, and then training
a DNN model f on the preprocessed inputs g(x).

— Stochastic/Randomized Gradients Apply some form of randomization of the DNN model. E.g. train a set of classifiers
and during the testing phase randomly select one classifier to predict the labels.

e Adversarial Training;:

in E,)pn L(C(x +6), 121
min By~ | max (Clz+9),y) (121)

Question 78 (Trade-Off between Natural and Robust Error).

mfin Ruar (f) + Reon () /A (122)

Ruus(f) = Pr {f(z)y <0} (123)

Rion(f) == Pr {36 € B.(z) s.t. f(z+0)y <0}

x,y~D
(124)
=E(;y)~p Hglr‘la)ié]l(f(x +6)y <0)
Approximate by a differentiable surrogate loss ®:
Ruat(f) = Ey)~p [2(f(2)y)] (125)
Question 79 (TRADES).
min Bapp @U@0+ Egyen | max o+ 8)f@)| /A (126)
minimize diff btw f(z) and y for accuracy minimize diff btw f:r)_ and f(z+9d) forrobustness
TRADES Loss
16 Self-Supervised Learning
Question 80 (Contrastive Learning). Loss:
max Pr = exp(z1) (127)

&N T T exn()

	I For Mid-Term
	Perceptron
	Linear Regression
	Logistic Regression
	Hard-Margin Support Vector Machines
	Soft-Margin Support Vector Machines
	Reproducing Kernels
	Gradient Descent
	Fully-Connected Neural Networks
	Convolutional Neural Networks

	II For Final
	Transformer
	Large Language Models
	Speculative Sampling
	Generative Adversarial Networks
	Adversarial Attacks
	Adversarial Robustness
	Self-Supervised Learning

